2022-2023學年安徽省潛山市第二中學數(shù)學高一上期末達標檢測模擬試題含解析_第1頁
2022-2023學年安徽省潛山市第二中學數(shù)學高一上期末達標檢測模擬試題含解析_第2頁
2022-2023學年安徽省潛山市第二中學數(shù)學高一上期末達標檢測模擬試題含解析_第3頁
2022-2023學年安徽省潛山市第二中學數(shù)學高一上期末達標檢測模擬試題含解析_第4頁
2022-2023學年安徽省潛山市第二中學數(shù)學高一上期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.設函數(shù)f(x)=2-x,x≤01,x>0,則滿足A.(-∞,-1]C.(-1,0) D.(-2.如圖所示,液體從一圓錐形漏斗漏入一圓柱形桶中,開始時,漏斗盛滿液體,經(jīng)過3分鐘漏完.已知圓柱中液面上升的速度是一個常量,H是圓錐形漏斗中液面下落的距離,則H與下落時間(分)的函數(shù)關系表示的圖象只可能是()A. B.C. D.3.函數(shù)lgx=3,則x=()A1000 B.100C.310 D.304.一鐘表的秒針長,經(jīng)過,秒針的端點所走的路線長為()A. B.C. D.5.已知是定義在上的奇函數(shù),且當時,,那么A. B.C. D.6.若,都為正實數(shù),,則的最大值是()A. B.C. D.7.命題“”的否定是()A. B.C. D.8.若,,則sin=A. B.C. D.9.已知函數(shù)是定義在R上的周期為2的偶函數(shù),當時,,則A. B.C. D.10.如圖,直線與單位圓相切于點,射線從出發(fā),繞著點逆時針旋轉,在旋轉的過程中,記(),所經(jīng)過的單位圓內(nèi)區(qū)域(陰影部分)的面積為,記,則下列選項判斷正確的是A.當時,B.對任意,且,都有C.對任意,都有D.對任意,都有11.已知集合,,有以下結論:①;②;③.其中錯誤的是()A.①③ B.②③C.①② D.①②③12.設,則“”是“”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.若弧度數(shù)為2的圓心角所對的弦長為2,則這個圓心角所夾扇形的面積是___________14.函數(shù)的單調(diào)遞增區(qū)間為__________15.已知,且的終邊上一點P的坐標為,則=______16.已知是冪函數(shù),且在區(qū)間是減函數(shù),則m=_____________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.在下列三個條件中任選一個,補充在下面的問題中,并作答①的最小正周期為,且是偶函數(shù):②圖象上相鄰兩個最高點之間的距離為,且;③直線與直線是圖象上相鄰的兩條對稱軸,且問題:已知函數(shù),若(1)求,的值;(請先在答題卡上寫出所選序號再做答)(2)將函數(shù)的圖象向右平移個單位長度后,再將得到的函數(shù)圖象上所有點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,求在上的最小值和最大值18.已知(),求:(1);(2).19.已知函數(shù),其中.(1)求函數(shù)的定義域;(2)若函數(shù)的最大值為2.求a的值.20.大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學家發(fā)現(xiàn)鮭魚的游速(單位:)與其耗氧量單位數(shù)之間的關系可以表示為函數(shù),其中為常數(shù),已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為時,其耗氧量為2700個單位.(1)求出游速與其耗氧量單位數(shù)之間的函數(shù)解析式;(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?21.函數(shù)=的部分圖像如圖所示.(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)將的圖像向右平移個單位,再將橫坐標伸長為原來的倍,得到函數(shù),若在上有兩個解,求的取值范圍.22.已知函數(shù),.(1)求函數(shù)的定義域;(2)求不等式的解集.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】畫出函數(shù)的圖象,利用函數(shù)的單調(diào)性列出不等式轉化求解即可【詳解】解:函數(shù)f(x)=2滿足f(x+1)<f(2x),可得2x<0≤x+1或2x<x+1?0,解得x∈(-故選:D2、A【解析】利用特殊值法,圓柱液面上升速度是常量,表示圓錐漏斗中液體單位時間內(nèi)落下相同的體積,當時間取分鐘時,液面下降的高度與漏斗高度的比較.【詳解】由于所給的圓錐形漏斗上口大于下口,當時間取分鐘時,液面下降的高度不會達到漏斗高度的,對比四個選項的圖象可得結果.故選:A【點睛】本題主要考查了函數(shù)圖象的判斷,常利用特殊值和函數(shù)的性質(zhì)判斷,屬于中檔題.3、A【解析】由lgx=3,可得直接計算出結果.【詳解】由lgx=3,有:則,故選:A【點睛】本題考查對數(shù)的定義,屬于基礎題.4、C【解析】計算出秒針的端點旋轉所形成的扇形的圓心角的弧度數(shù),然后利用扇形的弧長公式可計算出答案.【詳解】秒針的端點旋轉所形成的扇形的圓心角的弧度數(shù)為,因此,秒針的端點所走的路線長.故選:C.【點睛】本題考查扇形弧長的計算,計算時應將扇形的圓心角化為弧度數(shù),考查計算能力,屬于基礎題.5、C【解析】由題意得,,故,故選C考點:分段函數(shù)的應用.6、D【解析】由基本不等式,結合題中條件,直接求解,即可得出結果.【詳解】因為,都為正實數(shù),,所以,當且僅當,即時,取最大值.故選:D7、D【解析】直接利用全稱命題的否定為特稱命題進行求解.【詳解】命題“”為全稱命題,按照改量詞否結論的法則,所以否定為:,故選:D8、B【解析】因為,,所以sin==,故選B考點:本題主要考查三角函數(shù)倍半公式的應用點評:簡單題,注意角的范圍9、A【解析】依題意有.10、C【解析】對于,當,故錯誤;對于,由題可知對于任意,為增函數(shù),所以與的正負相同,則,故錯誤;對于,由,得對于任意,都有;對于,當時,,故錯誤.故選CD對任意,都有11、C【解析】解出不等式,得到集合,然后逐一判斷即可.【詳解】由可得所以,故①錯;,②錯;,③對,故選:C12、A【解析】根據(jù)充分條件、必要條件的概念求解即可.【詳解】因為,所以由,,所以“”是“”成立的充分不必要條件故選:A二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】根據(jù)所給弦長,圓心角求出所在圓的半徑,利用扇形面積公式求解.【詳解】由弦長為2,圓心角為2可知扇形所在圓的半徑,故,故答案為:14、【解析】由可得,或,令,因為在上遞減,函數(shù)在定義域內(nèi)遞減,根據(jù)復合函數(shù)的單調(diào)性可得函數(shù)的單調(diào)遞增區(qū)間為,故答案為.15、【解析】先求解,判斷的終邊在第四象限,計算,結合,即得解【詳解】由題意,故點,故終邊在第四象限且,又故故答案為:16、【解析】根據(jù)冪函數(shù)系數(shù)為1,得或,代入檢驗函數(shù)單調(diào)性即可得解.【詳解】由是冪函數(shù),可得,解得或,當時,在區(qū)間是減函數(shù),滿足題意;當時,在區(qū)間是增函數(shù),不滿足題意;故.故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1),(2)最小值為1,最大值為2【解析】(1)根據(jù)①②③所給的條件,以及正余弦函數(shù)的對稱性和周期性之間的關系即可求解;(2)根據(jù)函數(shù)的伸縮平移變換后的特點寫出的解析式即可.【小問1詳解】選條件①:∵的最小正周期為,∴,∴;又是偶函數(shù),∴對恒成立,得對恒成立,∴,∴(),又,∴;選條件②:∵函數(shù)圖象上相鄰兩個最高點之間的距離為,∴,;又,∴,即,∴(),又,∴;選條件③:∵直線與直線是圖象上相鄰的兩條對稱軸,∴,即.∴;又,∴,∴(),又,∴;【小問2詳解】由(1)無論選擇①②③均有,,即,將圖象向右平移個單位長度后,得到的圖象,將的圖象上所有點的橫坐標伸長為原來的4倍,縱坐標不變,得到的圖象,∵,∴∴在上單調(diào)遞增;在上單調(diào)遞減又∵,,∴在的最小值為1,最大值為2;綜上:,最小值=1,最大值=2.18、(1);(2).【解析】(1)用誘導公式化簡已知式為,已知式平方后可求得;(2)已知式平方后減去,再考慮到就可求得.【詳解】(1)由可得,所以,所以;(2),又因為,所以,,所以.【點睛】關鍵點點睛:本題解題的關鍵是熟記誘導公式,以及,,之間的聯(lián)系即,.19、(1);(2).【解析】(1)根據(jù)對數(shù)的性質(zhì)進行求解即可;(2)根據(jù)對數(shù)的運算性質(zhì),結合配方法、對數(shù)復合函數(shù)的單調(diào)性進行求解即可.【詳解】(1)要使函數(shù)有意義,則有,解得,所以函數(shù)的定義域為.(2)函數(shù)可化.因為,所.因,所以,即,由,解得.20、(1),;(2)24300【解析】:(1)由,可得,.(2)由題,解得:,故其耗氧量至多需要24300個單位.試題解析:(1)由題意,得,解得:,.∴游速與其耗氧量單位數(shù)之間的函數(shù)解析式為.(2)由題意,有,即,∴由對數(shù)函數(shù)的單調(diào)性,有,解得:,∴當一條鮭魚的游速不高于時,其耗氧量至多需要24300個單位.點晴:解決函數(shù)模型應用的解答題21、(1);(2).【解析】(1)先求出w=π,再根據(jù)圖像求出,再求函數(shù)的單調(diào)遞減區(qū)間.(2)先求出=,再利用數(shù)形結合求a的取值范圍.【詳解】(1)由題得.所以所以.令所以函數(shù)的單調(diào)遞減區(qū)間為.(2)將的圖像向右平移個單位得到,再將橫坐標伸長為原來的倍,得到函數(shù)=,若在上有兩個解,所以,所以所以所以a的取值范圍為.【點睛】本題主要考查三角函數(shù)解析式的求法和單調(diào)區(qū)間的求法,考查三角函數(shù)的圖像變換和三角方程的有解問題,考查三角函數(shù)的圖像和性質(zhì),意在考查學生對這些知識的掌握水平和分析推理能力.22、(1)(2)答案見解析【解析】(1)根據(jù)對數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論