版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則()A. B. C. D.2.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且3.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.4.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.5.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.6.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.7.設i是虛數(shù)單位,若復數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.38.已知實數(shù)、滿足約束條件,則的最大值為()A. B. C. D.9.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.10.已知集合,,若,則()A.或 B.或 C.或 D.或11.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.12.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數(shù)為().A.432 B.576 C.696 D.960二、填空題:本題共4小題,每小題5分,共20分。13.設全集,,,則______.14.已知點是拋物線的焦點,,是該拋物線上的兩點,若,則線段中點的縱坐標為__________.15.已知數(shù)列為正項等比數(shù)列,,則的最小值為________.16.在中,已知是的中點,且,點滿足,則的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知頂點是坐標原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關于點對稱.(1)求和的標準方程;(2)過點的直線與交于,與交于,求證:.18.(12分)已知函數(shù)(是自然對數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個極值點,且恒成立,求滿足條件的的最小值(極值點是指函數(shù)取極值時對應的自變量的值).19.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.20.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,求函數(shù)的極值;(2)設函數(shù)的導函數(shù)為,求證:函數(shù)有且僅有一個零點.21.(12分)已知橢圓:,不與坐標軸垂直的直線與橢圓交于,兩點.(Ⅰ)若線段的中點坐標為,求直線的方程;(Ⅱ)若直線過點,點滿足(,分別為直線,的斜率),求的值.22.(10分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】
考慮既屬于又屬于的集合,即得.【題目詳解】.故選:【答案點睛】本題考查集合的交運算,屬于基礎題.2.D【答案解析】
首先把三視圖轉換為幾何體,根據(jù)三視圖的長度,進一步求出個各棱長.【題目詳解】根據(jù)幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【答案點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.3.D【答案解析】
由題意,得出六棱錐為正六棱錐,求得,再結合球的性質,求得球的半徑,利用表面積公式,即可求解.【題目詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【答案點睛】本題主要考查了正棱錐的幾何結構特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結構特征,熟練應用球的性質求得球的半徑是解答的關鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.4.B【答案解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關系及其判定.【思路點睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.5.A【答案解析】
由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數(shù)學期望值.【題目詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數(shù)學期望為.故選:A.【答案點睛】本題考查隨機變量數(shù)學期望的計算,考查計算能力,屬于基礎題.6.B【答案解析】
據(jù)題意以菱形對角線交點為坐標原點建立平面直角坐標系,用坐標表示出,再根據(jù)坐標形式下向量的數(shù)量積運算計算出結果.【題目詳解】設與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標系,則,,,,,所以.故選:B.【答案點睛】本題考查建立平面直角坐標系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.7.A【答案解析】
根據(jù)復數(shù)除法運算化簡,結合純虛數(shù)定義即可求得m的值.【題目詳解】由復數(shù)的除法運算化簡可得,因為是純虛數(shù),所以,∴,故選:A.【答案點睛】本題考查了復數(shù)的概念和除法運算,屬于基礎題.8.C【答案解析】
作出不等式組表示的平面區(qū)域,作出目標函數(shù)對應的直線,結合圖象知當直線過點時,取得最大值.【題目詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內(nèi)部,如下圖表示:當目標函數(shù)經(jīng)過點時,取得最大值,最大值為.故選:C.【答案點睛】本題主要考查線性規(guī)劃等基礎知識;考查運算求解能力,數(shù)形結合思想,應用意識,屬于中檔題.9.B【答案解析】
由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【題目詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【答案點睛】本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題10.B【答案解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.11.D【答案解析】
做出函數(shù)的圖象,問題轉化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結合即可求解.【題目詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當直線經(jīng)過時,;當直線經(jīng)過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【答案點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關系轉化為兩個函數(shù)的交點是解題的關鍵,運用數(shù)形結合是解決函數(shù)零點問題的基本思想,屬于中檔題.12.B【答案解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【題目詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊方法數(shù)為種.故選:B.【答案點睛】本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
先求出集合,,然后根據(jù)交集、補集的定義求解即可.【題目詳解】解:,或;∴;∴.故答案為:.【答案點睛】本題主要考查集合的交集、補集運算,屬于基礎題.14.2【答案解析】
運用拋物線的定義將拋物線上的點到焦點距離等于到準線距離,然后求解結果.【題目詳解】拋物線的標準方程為:,則拋物線的準線方程為,設,,則,所以,則線段中點的縱坐標為.故答案為:【答案點睛】本題考查了拋物線的定義,由拋物線定義將點到焦點距離轉化為點到準線距離,需要熟練掌握定義,并能靈活運用,本題較為基礎.15.27【答案解析】
利用等比數(shù)列的性質求得,結合其下標和性質和均值不等式即可容易求得.【題目詳解】由等比數(shù)列的性質可知,則,.當且僅當時取得最小值.故答案為:.【答案點睛】本題考查等比數(shù)列的下標和性質,涉及均值不等式求和的最小值,屬綜合基礎題.16.【答案解析】
由中點公式的向量形式可得,即有,設,有,再分別討論三點共線和不共線時的情況,找到的關系,即可根據(jù)函數(shù)知識求出范圍.【題目詳解】是的中點,∴,即設,于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【答案點睛】本題主要考查學中點公式的向量形式和數(shù)量積的定義的應用,以及余弦定理的應用,涉及到函數(shù)思想和分類討論思想的應用,解題關鍵是建立函數(shù)關系式,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2)證明見解析.【答案解析】分析:(1)設的標準方程為,由題意可設.結合中點坐標公式計算可得的標準方程為.半徑,則的標準方程為.(2)設的斜率為,則其方程為,由弦長公式可得.聯(lián)立直線與拋物線的方程有.設,利用韋達定理結合弦長公式可得.則.即.詳解:(1)設的標準方程為,則.已知在直線上,故可設.因為關于對稱,所以解得所以的標準方程為.因為與軸相切,故半徑,所以的標準方程為.(2)設的斜率為,那么其方程為,則到的距離,所以.由消去并整理得:.設,則,那么.所以.所以,即.點睛:(1)直線與拋物線的位置關系和直線與橢圓、雙曲線的位置關系類似,一般要用到根與系數(shù)的關系;(2)有關直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點,若過拋物線的焦點,可直接使用公式|AB|=x1+x2+p,若不過焦點,則必須用一般弦長公式.18.(1);(2);(3).【答案解析】
(1)利用導數(shù)的幾何意義計算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導可得在上單調(diào)遞減,在上單調(diào)遞增,所以且,,,求出的范圍即可.【題目詳解】(1)因為,所以,當時,,所以切線方程為,即.(2),.因為函數(shù)在區(qū)間上單調(diào)遞增,所以,且恒成立,即,所以,即,又,故,所以實數(shù)的取值范圍是.(3).因為函數(shù)在區(qū)間上有兩個極值點,所以方程在上有兩不等實根,即.令,則,由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,解得且.又由,所以,且當和時,單調(diào)遞增,當時,單調(diào)遞減,是極值點,此時令,則,所以在上單調(diào)遞減,所以.因為恒成立,所以.若,取,則,所以.令,則,.當時,;當時,.所以,所以在上單調(diào)遞增,所以,即存在使得,不合題意.滿足條件的的最小值為-4.【答案點睛】本題考查導數(shù)的綜合應用,涉及到導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的單調(diào)性、極值點,不等式恒成立等知識,是一道難題.19.(1)(2)【答案解析】
(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【題目詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當且僅當時取等,.所以的面積的最大值為.【答案點睛】本題考查了正余弦定理在解三角形中的應用,考查了三角形面積的最值問題,難度較易.20.見解析【答案解析】
(1)當時,函數(shù),其定義域為,則,設,,易知函數(shù)在上單調(diào)遞增,且,所以當時,,即;當時,,即,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在處取得極小值,為,無極大值.(2)由題可得函數(shù)的定義域為,,設,,顯然函數(shù)在上單調(diào)遞增,當時,,,所以函數(shù)在內(nèi)有一個零點,所以函數(shù)有且僅有一個零點;當時,,,所以函數(shù)有且僅有一個零點,所以函數(shù)有且僅有一個零點;當時,,,因為,所以,,又,所以函數(shù)在內(nèi)有一個零點,所以函數(shù)有且僅有一個零點.綜上,函數(shù)有且僅有一個零點.21.(Ⅰ)(Ⅱ)【答案解析】
(Ⅰ)根據(jù)點差法,即可求得直線的斜率,則方程即可求得;(Ⅱ)設出直線方程,聯(lián)立橢圓方程,利用韋達定理,根據(jù),即可求得參數(shù)的值.【題目詳解】(1)設,,則兩式相減,可得.(*)因為線段的中點坐標為,所以,.代入(*)式,得.所以直線的斜率.所以直線的方程為,即.(Ⅱ)設直線:(),聯(lián)立整理得.所以,解得.所以,.所以,所以.所以.因為,所以.【答案點睛】本題考查中點弦問題的點差法求解,以及利用代數(shù)與幾何關系求直線方程,涉及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024教育培訓合同
- 2025版城市更新項目可行性研究合同范本示例3篇
- 二零二五年度孵化基地房產(chǎn)租賃合同及物業(yè)管理服務協(xié)議3篇
- 2025版道路養(yǎng)護柴油供應與效率提升合同3篇
- 2024年精裝房租賃協(xié)議樣本版B版
- 2024年環(huán)?;厥諛I(yè)務標準協(xié)議模板
- 2024年物聯(lián)網(wǎng)平臺建設與運營合同
- 2025版大數(shù)據(jù)分析服務股東合作協(xié)議書3篇
- 2024版藥店聘用協(xié)議書范本
- 二零二五年度企業(yè)周轉資金借款合同范本3篇
- 2025屆山東省即墨一中物理高三第一學期期末綜合測試試題含解析
- 健身房的考勤管理制度
- 無人機使用安全協(xié)議書范文范本
- 中國汽車行業(yè)分析與展望:適者生存-2024-10-市場解讀
- 專題05 閱讀-2023-2024學年六年級英語寒假專項提升(人教PEP版)
- 做賬實操-期貨公司的賬務處理示例
- 高考重慶語文試卷及答案
- 雙方共用消防通道協(xié)議書
- 綠化租擺服務投標方案(技術標)
- 整本書閱讀《鄉(xiāng)土中國》議題思辨:無訟之“訟”教學設計 中職語文高教版基礎模塊下冊
- 醫(yī)學教材 鼻出血的正確處理方法
評論
0/150
提交評論