版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
多邊形多邊形1
看下面的圖片,你能從中找出由一些線段圍成的圖形嗎?看下面的圖片,你能從中找出由一些線段圍成的圖形嗎?2這些圖形有什么特點(diǎn)?由幾條線段組成;它們不在同一條直線上;首尾順次相接.這種在平面內(nèi),由一些不在同一條直線上的線段首尾順次相接組成的圖形叫做多邊形。多邊形按組成它的線段的條數(shù)分成三角形、四邊形、五邊形……、n邊形。這就是說,一個(gè)多邊形由幾條線段組成,就叫做幾邊形,三角形是最簡單的多邊形。這些圖形有什么特點(diǎn)?3與三角形類似地,多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,如圖中的∠A、∠B、∠C、∠D、∠E。多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.如圖中的∠1是五邊形ABCDE的一個(gè)外角。[投影2]人教初中數(shù)學(xué)八上《第6課時(shí)-多邊形》課件-(高效課堂)獲獎(jiǎng)-人教數(shù)學(xué)2022-4連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線.四邊形有幾條對角線?五邊形有幾條對角線?畫圖看看。你能猜想n邊形有多少條對角線嗎?說說你的想法。人教初中數(shù)學(xué)八上《第6課時(shí)-多邊形》課件-(高效課堂)獲獎(jiǎng)-人教數(shù)學(xué)2022-5n邊形有1/2n(n-3)條對角線。因?yàn)閺膎邊形的一個(gè)頂點(diǎn)可以引n-3條對角線,n個(gè)頂點(diǎn)共引n(n-3)條對角線,又由于連接任意兩個(gè)頂點(diǎn)的兩條對角線是相同的,所以,n邊形有1/2n(n-3)條對角線。n邊形有1/2n(n-3)條對角線。因?yàn)閺膎邊形的一個(gè)頂點(diǎn)可6凸多邊形和凹多邊形如圖,下面的兩個(gè)多邊形有什么不同?凸多邊形和凹多邊形如圖,下面的兩個(gè)多邊形有什么不同?7在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺婤D所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形。注意:今后我們討論的多邊形指的都是凸多邊形.在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)8正多邊形的概念我們知道,等邊三角形、正方形的各個(gè)角都相等,各條邊都相等,像這樣各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。下面是正多邊形的一些例子。正多邊形的概念我們知道,等邊三角形、正方形的各個(gè)角都相等,各9課堂練習(xí)1、教材P21練習(xí)1。2、有五個(gè)人在告別的時(shí)候相互各握了一次手,他們共握了多少次手?你能找到一個(gè)幾何模型來說明嗎?課堂練習(xí)1、教材P21練習(xí)1。10課堂小結(jié)1、多邊形及有關(guān)概念。2、區(qū)別凸多邊形和凹多邊形。3、正多邊形的概念。4、n邊形對角線有1/2n(n-3)條。課堂小結(jié)1、多邊形及有關(guān)概念。11
軸對稱
軸對稱
12
引言
對稱現(xiàn)象無處不在,從自然景觀到藝術(shù)作品,從建筑物到交通標(biāo)志,甚至日常生活用品,都可以找到對稱的例子,對稱給我們帶來美的感受!引出新知引言對稱現(xiàn)象無處不在,從自然景觀到藝術(shù)作引出新知13探索新知問題1如圖,把一張紙對折,剪出一個(gè)圖案(折痕處不要完全剪斷),再打開這張對折的紙,就得到了美麗的窗花.觀察得到的窗花,你能發(fā)現(xiàn)它們有什么共同的特點(diǎn)嗎?
探索新知問題1如圖,把一張紙對折,剪出一個(gè)圖案(折14追問
你能舉出一些軸對稱圖形的例子嗎?
探索新知如果一個(gè)平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.這時(shí),我們也說這個(gè)圖形關(guān)于這條直線(成軸)對稱.追問你能舉出一些軸對稱圖形的例子嗎?探索新知如15
共同特征:每一對圖形沿著虛線折疊,左邊的圖形都能與右邊的圖形重合.
探索新知問題2觀察下面每對圖形(如圖),你能類比前面的內(nèi)容概括出它們的共同特征嗎?共同特征:探索新知問題2觀察下面每對圖形(如圖),16追問1你能再舉出一些兩個(gè)圖形成軸對稱的例子嗎?探索新知把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線(成軸)對稱,這條直線叫做對稱軸,折疊后重合的點(diǎn)是對應(yīng)點(diǎn),叫做對稱點(diǎn).
追問1你能再舉出一些兩個(gè)圖形成軸對稱的例子嗎?探索新17兩者的區(qū)別:
軸對稱圖形指的是一個(gè)圖形沿對稱軸折疊后這個(gè)圖形的兩部分能完全重合,而兩個(gè)圖形成軸對稱指的是兩個(gè)圖形之間的位置關(guān)系,這兩個(gè)圖形沿對稱軸折疊后能夠重合.探索新知追問2你能結(jié)合具體的圖形說明軸對稱圖形和兩個(gè)圖形成軸對稱有什么區(qū)別與聯(lián)系嗎?兩者的區(qū)別:探索新知追問2你能結(jié)合具體的圖形說明軸18
兩者的聯(lián)系:
把成軸對稱的兩個(gè)圖形看成一個(gè)整體,它就是一個(gè)軸對稱圖形.把一個(gè)軸對稱圖形沿對稱軸分成兩個(gè)圖形,這兩個(gè)圖形關(guān)于這條軸對稱.
探索新知追問2你能結(jié)合具體的圖形說明軸對稱圖形和兩個(gè)圖形成軸對稱有什么區(qū)別與聯(lián)系嗎?兩者的聯(lián)系:探索新知追問2你能結(jié)合具體的圖形說明軸19追問1你能說明其中的道理嗎?
探索新知問題3如圖,△ABC和△A′B′C′關(guān)于直線MN對稱,點(diǎn)A′,B′,C′分別是點(diǎn)A,B,C
的對稱點(diǎn),線段AA′,BB′,CC′與直線MN有什么關(guān)系?ABCMNPA′B′C′追問1你能說明其中探索新知問題3如圖,△ABC20探索新知追問2上面的問題說明“如果△ABC和△A′B′C′關(guān)于直線MN對稱,那么,直線MN垂直線段AA′,BB′和CC′,并且直線MN還平分線段AA′,BB′和CC′”.如果將其中的“三角形”改為“四邊形”“五邊形”…其他條件不變,上述結(jié)論還成立嗎?
ABCMNPA′B′C′探索新知追問2上面的問題說明“如果△ABC和ABCM21經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線.
探索新知問題3如圖,△ABC和△A′B′C′關(guān)于直線MN對稱,點(diǎn)A′,B′,C′分別是點(diǎn)A,B,C
的對稱點(diǎn),線段AA′,BB′,CC′與直線MN有什么關(guān)系?ABCMNPA′B′C′經(jīng)過線段中點(diǎn)并且垂直探索新知問題3如圖,△ABC22探索新知追問3你能用數(shù)學(xué)語言概括前面的結(jié)論嗎?
成軸對稱的兩個(gè)圖形的性質(zhì):如果兩個(gè)圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線.即對稱點(diǎn)所連線段被對稱軸垂直平分;對稱軸垂直平分對稱點(diǎn)所連線段.ABCMNPA′B′C′探索新知追問3你能用數(shù)學(xué)語言概括前面的結(jié)論嗎?成23
結(jié)論:直線l垂直線段AA′,BB′,直線l平分線段AA′,BB′(或直線l是線段AA′,BB′的垂直平分線).探索新知問題4下圖是一個(gè)軸對稱圖形,你能發(fā)現(xiàn)什么結(jié)論?能說明理由嗎?
ABlA′B′結(jié)論:探索新知問題4下圖是一個(gè)軸對稱圖形,你能發(fā)現(xiàn)24追問你能用數(shù)學(xué)語言概括前面的結(jié)論嗎?探索新知問題4下圖是一個(gè)軸對稱圖形,你能發(fā)現(xiàn)什么結(jié)論?能說明理由嗎?
ABlA′B′追問你能用數(shù)學(xué)語言概括前面探索新知問題4下圖是一25
軸對稱圖形的性質(zhì):
軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線.
探索新知問題4下圖是一個(gè)軸對稱圖形,你能發(fā)現(xiàn)什么結(jié)論?能說明理由嗎?
ABlA′B′軸對稱圖形的性質(zhì):探索新知問題4下圖是一個(gè)軸對稱圖26課堂練習(xí)練習(xí)1如圖所示的每個(gè)圖形是軸對稱圖形嗎?如果是,指出它的對稱軸.
課堂練習(xí)練習(xí)1如圖所示的每個(gè)圖形是軸對稱圖形嗎?如27課堂練習(xí)練習(xí)2如圖所示的每幅圖形中的兩個(gè)圖案是軸對稱的嗎?如果是,試著找出它們的對稱軸,并找出一對對稱點(diǎn).
課堂練習(xí)練習(xí)2如圖所示的每幅圖形中的兩個(gè)圖案是軸對稱28(1)本節(jié)課學(xué)習(xí)了哪些主要內(nèi)容?(2)軸對稱圖形和兩個(gè)圖形成軸對稱的區(qū)別與聯(lián)系是什么?(3)成軸對稱的兩個(gè)圖形有什么性質(zhì)?軸對稱圖形有什么性質(zhì)?我們是怎么探究這些性質(zhì)的?
課堂小結(jié)(1)本節(jié)課學(xué)習(xí)了哪些主要內(nèi)容?課堂小結(jié)29教科書習(xí)題13.1第1、2、3、4、5題.
布置作業(yè)教科書習(xí)題13.1第1、2、3、4、5題.布置作業(yè)30多邊形多邊形31
看下面的圖片,你能從中找出由一些線段圍成的圖形嗎?看下面的圖片,你能從中找出由一些線段圍成的圖形嗎?32這些圖形有什么特點(diǎn)?由幾條線段組成;它們不在同一條直線上;首尾順次相接.這種在平面內(nèi),由一些不在同一條直線上的線段首尾順次相接組成的圖形叫做多邊形。多邊形按組成它的線段的條數(shù)分成三角形、四邊形、五邊形……、n邊形。這就是說,一個(gè)多邊形由幾條線段組成,就叫做幾邊形,三角形是最簡單的多邊形。這些圖形有什么特點(diǎn)?33與三角形類似地,多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,如圖中的∠A、∠B、∠C、∠D、∠E。多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.如圖中的∠1是五邊形ABCDE的一個(gè)外角。[投影2]人教初中數(shù)學(xué)八上《第6課時(shí)-多邊形》課件-(高效課堂)獲獎(jiǎng)-人教數(shù)學(xué)2022-34連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線.四邊形有幾條對角線?五邊形有幾條對角線?畫圖看看。你能猜想n邊形有多少條對角線嗎?說說你的想法。人教初中數(shù)學(xué)八上《第6課時(shí)-多邊形》課件-(高效課堂)獲獎(jiǎng)-人教數(shù)學(xué)2022-35n邊形有1/2n(n-3)條對角線。因?yàn)閺膎邊形的一個(gè)頂點(diǎn)可以引n-3條對角線,n個(gè)頂點(diǎn)共引n(n-3)條對角線,又由于連接任意兩個(gè)頂點(diǎn)的兩條對角線是相同的,所以,n邊形有1/2n(n-3)條對角線。n邊形有1/2n(n-3)條對角線。因?yàn)閺膎邊形的一個(gè)頂點(diǎn)可36凸多邊形和凹多邊形如圖,下面的兩個(gè)多邊形有什么不同?凸多邊形和凹多邊形如圖,下面的兩個(gè)多邊形有什么不同?37在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺婤D所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形。注意:今后我們討論的多邊形指的都是凸多邊形.在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)38正多邊形的概念我們知道,等邊三角形、正方形的各個(gè)角都相等,各條邊都相等,像這樣各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。下面是正多邊形的一些例子。正多邊形的概念我們知道,等邊三角形、正方形的各個(gè)角都相等,各39課堂練習(xí)1、教材P21練習(xí)1。2、有五個(gè)人在告別的時(shí)候相互各握了一次手,他們共握了多少次手?你能找到一個(gè)幾何模型來說明嗎?課堂練習(xí)1、教材P21練習(xí)1。40課堂小結(jié)1、多邊形及有關(guān)概念。2、區(qū)別凸多邊形和凹多邊形。3、正多邊形的概念。4、n邊形對角線有1/2n(n-3)條。課堂小結(jié)1、多邊形及有關(guān)概念。41
軸對稱
軸對稱
42
引言
對稱現(xiàn)象無處不在,從自然景觀到藝術(shù)作品,從建筑物到交通標(biāo)志,甚至日常生活用品,都可以找到對稱的例子,對稱給我們帶來美的感受!引出新知引言對稱現(xiàn)象無處不在,從自然景觀到藝術(shù)作引出新知43探索新知問題1如圖,把一張紙對折,剪出一個(gè)圖案(折痕處不要完全剪斷),再打開這張對折的紙,就得到了美麗的窗花.觀察得到的窗花,你能發(fā)現(xiàn)它們有什么共同的特點(diǎn)嗎?
探索新知問題1如圖,把一張紙對折,剪出一個(gè)圖案(折44追問
你能舉出一些軸對稱圖形的例子嗎?
探索新知如果一個(gè)平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.這時(shí),我們也說這個(gè)圖形關(guān)于這條直線(成軸)對稱.追問你能舉出一些軸對稱圖形的例子嗎?探索新知如45
共同特征:每一對圖形沿著虛線折疊,左邊的圖形都能與右邊的圖形重合.
探索新知問題2觀察下面每對圖形(如圖),你能類比前面的內(nèi)容概括出它們的共同特征嗎?共同特征:探索新知問題2觀察下面每對圖形(如圖),46追問1你能再舉出一些兩個(gè)圖形成軸對稱的例子嗎?探索新知把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線(成軸)對稱,這條直線叫做對稱軸,折疊后重合的點(diǎn)是對應(yīng)點(diǎn),叫做對稱點(diǎn).
追問1你能再舉出一些兩個(gè)圖形成軸對稱的例子嗎?探索新47兩者的區(qū)別:
軸對稱圖形指的是一個(gè)圖形沿對稱軸折疊后這個(gè)圖形的兩部分能完全重合,而兩個(gè)圖形成軸對稱指的是兩個(gè)圖形之間的位置關(guān)系,這兩個(gè)圖形沿對稱軸折疊后能夠重合.探索新知追問2你能結(jié)合具體的圖形說明軸對稱圖形和兩個(gè)圖形成軸對稱有什么區(qū)別與聯(lián)系嗎?兩者的區(qū)別:探索新知追問2你能結(jié)合具體的圖形說明軸48
兩者的聯(lián)系:
把成軸對稱的兩個(gè)圖形看成一個(gè)整體,它就是一個(gè)軸對稱圖形.把一個(gè)軸對稱圖形沿對稱軸分成兩個(gè)圖形,這兩個(gè)圖形關(guān)于這條軸對稱.
探索新知追問2你能結(jié)合具體的圖形說明軸對稱圖形和兩個(gè)圖形成軸對稱有什么區(qū)別與聯(lián)系嗎?兩者的聯(lián)系:探索新知追問2你能結(jié)合具體的圖形說明軸49追問1你能說明其中的道理嗎?
探索新知問題3如圖,△ABC和△A′B′C′關(guān)于直線MN對稱,點(diǎn)A′,B′,C′分別是點(diǎn)A,B,C
的對稱點(diǎn),線段AA′,BB′,CC′與直線MN有什么關(guān)系?ABCMNPA′B′C′追問1你能說明其中探索新知問題3如圖,△ABC50探索新知追問2上面的問題說明“如果△ABC和△A′B′C′關(guān)于直線MN對稱,那么,直線MN垂直線段AA′,BB′和CC′,并且直線MN還平分線段AA′,BB′和CC′”.如果將其中的“三角形”改為“四邊形”“五邊形”…其他條件不變,上述結(jié)論還成立嗎?
ABCMNPA′B′C′探索新知追問2上面的問題說明“如果△ABC和ABCM51經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線.
探索新知問題3如圖,△ABC和△A′B′C′關(guān)于直線MN對稱,點(diǎn)A′,B′,C′分別是點(diǎn)A,B,C
的對稱點(diǎn),線段AA′,BB′,CC′與直線MN有什么關(guān)系?ABCMNPA′B′C′經(jīng)過線段中點(diǎn)并且垂直探索新知問題3如圖,△ABC52探索新知追問3你能用數(shù)學(xué)語言概括前面的結(jié)論嗎?
成軸對稱的兩個(gè)圖形的性質(zhì):如果兩個(gè)圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線.即對稱點(diǎn)所連線段被對稱軸垂直平分;對稱軸垂直平分對稱點(diǎn)所連線段.ABCMNPA′B′C′探索新知追問3你能用數(shù)學(xué)語言概括前面的結(jié)論嗎?成53
結(jié)論:直線l垂直線段AA′,BB′,直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 店鋪?zhàn)赓U(出租)意向協(xié)議書
- 2025年度高端摩托車租賃及保養(yǎng)服務(wù)合同2篇
- 2025版?zhèn)€人入股合作協(xié)議書:互聯(lián)網(wǎng)公司股權(quán)分配合同4篇
- 2025年度個(gè)人消費(fèi)分期付款合同標(biāo)準(zhǔn)7篇
- 2025-2030全球石墨氮化碳行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球封離型CO2激光器冷水機(jī)行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025年全球及中國鼻炎光療儀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025年全球及中國常壓等離子體裝置行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025年度國際貨運(yùn)代理及物流服務(wù)合同
- 商家聯(lián)盟協(xié)議書
- 江蘇省蘇州市2024-2025學(xué)年高三上學(xué)期1月期末生物試題(有答案)
- 銷售與銷售目標(biāo)管理制度
- 人教版(2025新版)七年級下冊英語:寒假課內(nèi)預(yù)習(xí)重點(diǎn)知識默寫練習(xí)
- 2024年食品行業(yè)員工勞動(dòng)合同標(biāo)準(zhǔn)文本
- 2025年第一次工地開工會議主要議程開工大吉模板
- 全屋整裝售后保修合同模板
- 壁壘加筑未來可期:2024年短保面包行業(yè)白皮書
- 高中生物學(xué)科學(xué)推理能力測試
- GB/T 44423-2024近紅外腦功能康復(fù)評估設(shè)備通用要求
- 2024-2030年中國減肥行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資研究報(bào)告
- 運(yùn)動(dòng)技能學(xué)習(xí)
評論
0/150
提交評論