2023屆廣東省汕頭市潮師高考數(shù)學(xué)必刷試卷含解析_第1頁
2023屆廣東省汕頭市潮師高考數(shù)學(xué)必刷試卷含解析_第2頁
2023屆廣東省汕頭市潮師高考數(shù)學(xué)必刷試卷含解析_第3頁
2023屆廣東省汕頭市潮師高考數(shù)學(xué)必刷試卷含解析_第4頁
2023屆廣東省汕頭市潮師高考數(shù)學(xué)必刷試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則的值為()A. B. C. D.2.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.33.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.4.若雙曲線:()的一個焦點(diǎn)為,過點(diǎn)的直線與雙曲線交于、兩點(diǎn),且的中點(diǎn)為,則的方程為()A. B. C. D.5.將函數(shù)圖象上所有點(diǎn)向左平移個單位長度后得到函數(shù)的圖象,如果在區(qū)間上單調(diào)遞減,那么實(shí)數(shù)的最大值為()A. B. C. D.6.的展開式中的常數(shù)項(xiàng)為()A.-60 B.240 C.-80 D.1807.設(shè),則(

)A.10 B.11 C.12 D.138.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.09.若函數(shù)的定義域?yàn)镸={x|-2≤x≤2},值域?yàn)镹={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.10.設(shè)全集,集合,,則集合()A. B. C. D.11.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.12.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量=(1,2),=(-3,1),則=______.14.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)15.如圖所示,點(diǎn),B均在拋物線上,等腰直角的斜邊為BC,點(diǎn)C在x軸的正半軸上,則點(diǎn)B的坐標(biāo)是________.16.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點(diǎn).(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;(2)若點(diǎn)P的極坐標(biāo)為,,求的值.18.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.19.(12分)已知橢圓的離心率為,直線過橢圓的右焦點(diǎn),過的直線交橢圓于兩點(diǎn)(均異于左、右頂點(diǎn)).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點(diǎn).若直線交于點(diǎn),直線交于點(diǎn),試判斷是否為定值,若是,求出定值;若不是,說明理由.20.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;(2)若函數(shù)的兩個極值點(diǎn)為,,求的最小值.21.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點(diǎn)在線段上,且平面,,,求二面角的余弦值.22.(10分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;(2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以二?xiàng)式的展開式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力2.A【解析】

分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長度相關(guān)的最值問題,可利用拋物線的幾何性質(zhì)把動線段的長度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來求解.3.B【解析】

根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.4.D【解析】

求出直線的斜率和方程,代入雙曲線的方程,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,結(jié)合焦點(diǎn)的坐標(biāo),可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設(shè),則,由的中點(diǎn)為,可得,解答,又由,即,解得,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:D.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程的求解,其中解答中屬于運(yùn)用雙曲線的焦點(diǎn)和聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.5.B【解析】

根據(jù)條件先求出的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】將函數(shù)圖象上所有點(diǎn)向左平移個單位長度后得到函數(shù)的圖象,則,設(shè),則當(dāng)時,,,即,要使在區(qū)間上單調(diào)遞減,則得,得,即實(shí)數(shù)的最大值為,故選:B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調(diào)性求參數(shù),屬于中檔題.6.D【解析】

求的展開式中的常數(shù)項(xiàng),可轉(zhuǎn)化為求展開式中的常數(shù)項(xiàng)和項(xiàng),再求和即可得出答案.【詳解】由題意,中常數(shù)項(xiàng)為,中項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用和二項(xiàng)式展開式的通項(xiàng)公式,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.7.B【解析】

根據(jù)題中給出的分段函數(shù),只要將問題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點(diǎn)睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.8.D【解析】分析:因?yàn)轭}設(shè)中給出了的值,要求的值,故應(yīng)考慮兩者之間滿足的關(guān)系.詳解:由題設(shè)有,故有,所以,從而,故選D.點(diǎn)睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結(jié)論之間的關(guān)系去尋找函數(shù)的解析式要滿足的關(guān)系.9.B【解析】因?yàn)閷不符合定義域當(dāng)中的每一個元素都有象,即可排除;對B滿足函數(shù)定義,故符合;對C出現(xiàn)了定義域當(dāng)中的一個元素對應(yīng)值域當(dāng)中的兩個元素的情況,不符合函數(shù)的定義,從而可以否定;對D因?yàn)橹涤虍?dāng)中有的元素沒有原象,故可否定.故選B.10.C【解析】∵集合,,∴點(diǎn)睛:本題是道易錯題,看清所問問題求并集而不是交集.11.B【解析】

采用排除法:通過判斷函數(shù)的奇偶性排除選項(xiàng)A;通過判斷特殊點(diǎn)的函數(shù)值符號排除選項(xiàng)D和選項(xiàng)C即可求解.【詳解】對于選項(xiàng)A:由題意知,函數(shù)的定義域?yàn)椋潢P(guān)于原點(diǎn)對稱,因?yàn)?所以函數(shù)為奇函數(shù),其圖象關(guān)于原點(diǎn)對稱,故選A排除;對于選項(xiàng)D:因?yàn)?故選項(xiàng)D排除;對于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;故選:B【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和特殊點(diǎn)函數(shù)值符號判斷函數(shù)圖象;考查運(yùn)算求解能力和邏輯推理能力;選取合適的特殊點(diǎn)并判斷其函數(shù)值符號是求解本題的關(guān)鍵;屬于中檔題、常考題型.12.D【解析】

做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點(diǎn),而函數(shù)在上有3個交點(diǎn),則在上有4個不同的交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實(shí)數(shù)根,則在上有4個不同的實(shí)數(shù)根,當(dāng)直線經(jīng)過時,;當(dāng)直線經(jīng)過時,,可知當(dāng)時,直線與的圖象在上有4個交點(diǎn),即方程,在上有4個不同的實(shí)數(shù)根.故選:D.【點(diǎn)睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點(diǎn)和方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點(diǎn)是解題的關(guān)鍵,運(yùn)用數(shù)形結(jié)合是解決函數(shù)零點(diǎn)問題的基本思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.-6【解析】

由可求,然后根據(jù)向量數(shù)量積的坐標(biāo)表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點(diǎn)睛】本題主要考查了向量數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)試題.14.充分不必要【解析】

由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點(diǎn)睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.15.【解析】

設(shè)出兩點(diǎn)的坐標(biāo),結(jié)合拋物線方程、兩條直線垂直的條件以及兩點(diǎn)間的距離公式列方程,解方程求得的坐標(biāo).【詳解】設(shè),由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點(diǎn)睛】本題考查拋物線的方程和運(yùn)用,考查方程思想和運(yùn)算能力,屬于中檔題.16.【解析】

將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補(bǔ)角.在三角形中,,故.【點(diǎn)睛】本小題主要考查空間兩條直線所成角的余弦值的計(jì)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2)2.【解析】

(1)由得,求出曲線的直角坐標(biāo)方程.由直線的參數(shù)方程消去參數(shù),即求直線的普通方程;(2)將直線的參數(shù)方程化為標(biāo)準(zhǔn)式(為參數(shù)),代入曲線的直角坐標(biāo)方程,韋達(dá)定理得,點(diǎn)在直線上,則,即可求出的值.【詳解】(1)由可得,即,即,曲線的直角坐標(biāo)方程為,由直線的參數(shù)方程(t為參數(shù)),消去得,即直線的普通方程為.(Ⅱ)點(diǎn)的直角坐標(biāo)為,則點(diǎn)在直線上.將直線的參數(shù)方程化為標(biāo)準(zhǔn)式(為參數(shù)),代入曲線的直角坐標(biāo)方程,整理得,直線與曲線交于兩點(diǎn),,即.設(shè)點(diǎn)所對應(yīng)的參數(shù)分別為,由韋達(dá)定理可得,.點(diǎn)在直線上,,.【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程和普通方程的互化及應(yīng)用,屬于中檔題.18.(1)(2)【解析】

(1)利用零點(diǎn)分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結(jié)合基本不等式,求得的最小值.【詳解】(1)當(dāng)時,,即,無解;當(dāng)時,,即,得;當(dāng)時,,即,得.故所求不等式的解集為.(2)因?yàn)?,所以,則,.當(dāng)且僅當(dāng)即時取等號.故的最小值為.【點(diǎn)睛】本小題主要考查零點(diǎn)分段法解絕對值不等式,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.19.(1)(2)定值為0.【解析】

(1)根據(jù)直線方程求焦點(diǎn)坐標(biāo),即得c,再根據(jù)離心率得,(2)先設(shè)直線方程以及各點(diǎn)坐標(biāo),化簡,再聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理代入化簡得結(jié)果.【詳解】(1)因?yàn)橹本€過橢圓的右焦點(diǎn),所以,因?yàn)殡x心率為,所以,(2),設(shè)直線,則因此由得,所以,因此即【點(diǎn)睛】本題考查橢圓方程以及直線與橢圓位置關(guān)系,考查綜合分析求解能力,屬中檔題.20.(1)(2)【解析】分析:(1)先求導(dǎo),再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調(diào)遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個極值點(diǎn)故為方程的兩根,,,則由由,則上單調(diào)遞減,即由知綜上所述,的最小值為.點(diǎn)睛:(1)本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值,考查利用導(dǎo)數(shù)求函數(shù)的最值,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)本題的難點(diǎn)有兩個,其一是求出,其二是構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.21.(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)推導(dǎo)出BC⊥CE,從而EC⊥平面ABCD,進(jìn)而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進(jìn)而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設(shè)AC與BD的交點(diǎn)為G,推導(dǎo)出EC//FG,取BC的中點(diǎn)為O,連結(jié)OD,則OD⊥BC,以O(shè)為坐標(biāo)原點(diǎn),以過點(diǎn)O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因?yàn)槠矫嫫矫妫云矫?,所以,因?yàn)?,所以平面,所以,因?yàn)樗倪呅问瞧叫兴倪呅?,所以四邊形是菱形,故;解法一:(Ⅱ)設(shè)與的交點(diǎn)為,因?yàn)槠矫?,平面平面于,所以,因?yàn)槭侵悬c(diǎn),所以是的中點(diǎn),因?yàn)?,取的中點(diǎn)為,連接,則,因?yàn)槠矫嫫矫妫悦?,以為坐?biāo)原點(diǎn),以過點(diǎn)且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標(biāo)系.不妨設(shè),則,,,,,,,設(shè)平面的法向量,則,取,同理可得平面的法向量,設(shè)平面與平面的夾角為,因?yàn)?,所以二面角的余弦值?解法二:(Ⅱ)設(shè)與的交點(diǎn)為,因?yàn)槠矫?,平面平面于,所以,因?yàn)槭侵悬c(diǎn),所以是的中點(diǎn),因?yàn)?,,所以平面,所以,取中點(diǎn),連接、,因?yàn)?,所以,故平面,所以,即是二面角的平面角,不妨設(shè),因?yàn)?,,在中,,所以,所以二面角的余弦值?【點(diǎn)睛】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論