2023屆湖北省咸寧市高三考前熱身數(shù)學(xué)試卷含解析_第1頁
2023屆湖北省咸寧市高三考前熱身數(shù)學(xué)試卷含解析_第2頁
2023屆湖北省咸寧市高三考前熱身數(shù)學(xué)試卷含解析_第3頁
2023屆湖北省咸寧市高三考前熱身數(shù)學(xué)試卷含解析_第4頁
2023屆湖北省咸寧市高三考前熱身數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為()A. B. C. D.2.直角坐標(biāo)系中,雙曲線()與拋物線相交于、兩點(diǎn),若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.3.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.4.在中,點(diǎn)D是線段BC上任意一點(diǎn),,,則()A. B.-2 C. D.25.已知數(shù)列中,,(),則等于()A. B. C. D.26.設(shè)曲線在點(diǎn)處的切線方程為,則()A.1 B.2 C.3 D.47.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.8.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.9.已知非零向量,滿足,,則與的夾角為()A. B. C. D.10.如圖,圓是邊長(zhǎng)為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.11.袋中裝有標(biāo)號(hào)為1,2,3,4,5,6且大小相同的6個(gè)小球,從袋子中一次性摸出兩個(gè)球,記下號(hào)碼并放回,如果兩個(gè)號(hào)碼的和是3的倍數(shù),則獲獎(jiǎng),若有5人參與摸球,則恰好2人獲獎(jiǎng)的概率是()A. B. C. D.12.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知F為雙曲線的右焦點(diǎn),過F作C的漸近線的垂線FD,D為垂足,且(O為坐標(biāo)原點(diǎn)),則C的離心率為________.14.函數(shù)的極大值為______.15.如圖,已知扇形的半徑為1,面積為,則_____.16.已知函數(shù),則不等式的解集為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角A、B、C的對(duì)邊分別為a、b、c,且.(1)求角A的大??;(2)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),,求的值.18.(12分)已知數(shù)列是等差數(shù)列,前項(xiàng)和為,且,.(1)求.(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)已知,,設(shè)函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.20.(12分)已知函數(shù).(1)若在處導(dǎo)數(shù)相等,證明:;(2)若對(duì)于任意,直線與曲線都有唯一公共點(diǎn),求實(shí)數(shù)的取值范圍.21.(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.22.(10分)已知橢圓:的離心率為,右焦點(diǎn)為拋物線的焦點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)為坐標(biāo)原點(diǎn),過作兩條射線,分別交橢圓于、兩點(diǎn),若、斜率之積為,求證:的面積為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

推導(dǎo)出函數(shù)的圖象關(guān)于直線對(duì)稱,由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對(duì)的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對(duì)稱.若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對(duì)出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;②當(dāng)時(shí),,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對(duì)稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對(duì)參數(shù)的值進(jìn)行檢驗(yàn),考查分析問題和解決問題的能力,屬于中等題.2.D【解析】

根據(jù)題干得到點(diǎn)A坐標(biāo)為,代入拋物線得到坐標(biāo)為,再將點(diǎn)代入雙曲線得到離心率.【詳解】因?yàn)槿切蜲AB是等邊三角形,設(shè)直線OA為,設(shè)點(diǎn)A坐標(biāo)為,代入拋物線得到x=2b,故點(diǎn)A的坐標(biāo)為,代入雙曲線得到故答案為:D.【點(diǎn)睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).3.C【解析】

由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個(gè)交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識(shí),是一道中檔題.4.A【解析】

設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點(diǎn)睛】本題考查了向量加法、減法以及數(shù)乘運(yùn)算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.5.A【解析】

分別代值計(jì)算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

,

故選:A.【點(diǎn)睛】本題考查數(shù)列的周期性和運(yùn)用:求數(shù)列中的項(xiàng),考查運(yùn)算能力,屬于基礎(chǔ)題.6.D【解析】

利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因?yàn)?,且在點(diǎn)處的切線的斜率為3,所以,即.故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查運(yùn)算求解能力,是基礎(chǔ)題7.D【解析】

利用是偶函數(shù)化簡(jiǎn),結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因?yàn)樵谏线f減,,即.故選:D【點(diǎn)睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.8.C【解析】

利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點(diǎn)睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.9.B【解析】

由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.10.C【解析】

建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個(gè)題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運(yùn)算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.11.C【解析】

先確定摸一次中獎(jiǎng)的概率,5個(gè)人摸獎(jiǎng),相當(dāng)于發(fā)生5次試驗(yàn),根據(jù)每一次發(fā)生的概率,利用獨(dú)立重復(fù)試驗(yàn)的公式得到結(jié)果.【詳解】從6個(gè)球中摸出2個(gè),共有種結(jié)果,兩個(gè)球的號(hào)碼之和是3的倍數(shù),共有摸一次中獎(jiǎng)的概率是,5個(gè)人摸獎(jiǎng),相當(dāng)于發(fā)生5次試驗(yàn),且每一次發(fā)生的概率是,有5人參與摸獎(jiǎng),恰好有2人獲獎(jiǎng)的概率是,故選:.【點(diǎn)睛】本題主要考查了次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生次的概率,考查獨(dú)立重復(fù)試驗(yàn)的概率,解題時(shí)主要是看清摸獎(jiǎng)5次,相當(dāng)于做了5次獨(dú)立重復(fù)試驗(yàn),利用公式做出結(jié)果,屬于中檔題.12.A【解析】

由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

求出焦點(diǎn)到漸近線的距離就可得到的等式,從而可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,由得,∴,,∴.故答案為:2.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是求出焦點(diǎn)到漸近線的距離,從而得出一個(gè)關(guān)于的等式.14.【解析】

先求函的定義域,再對(duì)函數(shù)進(jìn)行求導(dǎo),再解不等式得單調(diào)區(qū)間,進(jìn)而求得極值點(diǎn),即可求出函數(shù)的極大值.【詳解】函數(shù),,,令得,,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),函數(shù)取到極大值,極大值為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力,求解時(shí)注意定義域優(yōu)先法則的應(yīng)用.15.【解析】

根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公式求出.【詳解】設(shè)角,則,,所以在等腰三角形中,,則.故答案為:.【點(diǎn)睛】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎(chǔ)題.16.【解析】

,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,涉及到解一元二次不等式,考查學(xué)生的計(jì)算能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因?yàn)椋?,即,即,所?(2)∵,.所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點(diǎn)睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.18.(1)(2)【解析】

(1)由數(shù)列是等差數(shù)列,所以,解得,又由,解得,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)得,利用乘公比錯(cuò)位相減,即可求解數(shù)列的前n項(xiàng)和.【詳解】(1)由題意,數(shù)列是等差數(shù)列,所以,又,,由,得,所以,解得,所以數(shù)列的通項(xiàng)公式為.(2)由(1)得,,,兩式相減得,,即.【點(diǎn)睛】本題主要考查等差的通項(xiàng)公式、以及“錯(cuò)位相減法”求和的應(yīng)用,此類題目是數(shù)列問題中的常見題型,解答中確定通項(xiàng)公式是基礎(chǔ),準(zhǔn)確計(jì)算求和是關(guān)鍵,易錯(cuò)點(diǎn)是在“錯(cuò)位”之后求和時(shí),弄錯(cuò)等比數(shù)列的項(xiàng)數(shù),能較好的考查考生的數(shù)形結(jié)合思想、邏輯思維能力及基本計(jì)算能力等.19.(1);(2)證明見解析【解析】

(1)利用零點(diǎn)分段法,求出各段的取值范圍然后取并集可得結(jié)果.(2)利用絕對(duì)值三角不等式可得,然后使用柯西不等式可得結(jié)果.【詳解】(1)由,所以由當(dāng)時(shí),則所以當(dāng)時(shí),則當(dāng)時(shí),則綜上所述:(2)由當(dāng)且僅當(dāng)時(shí)取等號(hào)所以由,所以所以令根據(jù)柯西不等式,則當(dāng)且僅當(dāng),即取等號(hào)由故,又則【點(diǎn)睛】本題考查使用零點(diǎn)分段法求解絕對(duì)值不等式以及柯西不等式的應(yīng)用,屬基礎(chǔ)題.20.(I)見解析(II)【解析】

(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導(dǎo)數(shù)相等,得到,得,由韋達(dá)定理得,由基本不等式得,得,由題意得,令,則,令,,利用導(dǎo)數(shù)性質(zhì)能證明.(2)由得,令,利用反證法可證明證明恒成立.由對(duì)任意,只有一個(gè)解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達(dá)定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當(dāng)自變量充分大時(shí),,所以存在,,使得,,取,則與至少有兩個(gè)交點(diǎn),矛盾.由對(duì)任意,只有一個(gè)解,得為上的遞增函數(shù),得,令,則,得【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的運(yùn)算及其應(yīng)用,同時(shí)考查邏輯思維能力和綜合應(yīng)用能力屬難題.21.(1)見解析(2)【解析】

(1)通過勾股定理得出,又,進(jìn)而可得平面,則可得到,問題得證;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因?yàn)槠矫妫?,又因?yàn)?,,,所以,因此,所以,因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,所以,平面的法向量,設(shè)平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.【點(diǎn)睛】本題考查空間垂直關(guān)系的證明,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力,是中檔題.22.(1);(2)見解析【解析】

(1)由條件可得,再根據(jù)離心率可求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論