2022-2023學(xué)年內(nèi)蒙古自治區(qū)錫林郭勒盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第1頁
2022-2023學(xué)年內(nèi)蒙古自治區(qū)錫林郭勒盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第2頁
2022-2023學(xué)年內(nèi)蒙古自治區(qū)錫林郭勒盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第3頁
2022-2023學(xué)年內(nèi)蒙古自治區(qū)錫林郭勒盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第4頁
2022-2023學(xué)年內(nèi)蒙古自治區(qū)錫林郭勒盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年內(nèi)蒙古自治區(qū)錫林郭勒盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號(hào):________

一、單選題(50題)1.

2.

等于()A.A.

B.

C.

D.0

3.

4.

5.

6.

7.A.A.

B.e

C.e2

D.1

8.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個(gè)平面B.雙曲柱面C.橢圓柱面D.圓柱面

9.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx

10.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x

B.(Ax+B)e2x

C.Ax2e2x

D.x(Ax+B)e2x

11.

12.

13.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.

B.

C.

D.

14.

15.等于()A.A.

B.

C.

D.

16.

17.

18.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-2

19.方程x2+2y2-z2=0表示的二次曲面是()

A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面20.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx21.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3

22.

23.下列關(guān)系正確的是()。A.

B.

C.

D.

24.設(shè)y=exsinx,則y'''=

A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

25.A.A.x2+cosy

B.x2-cosy

C.x2+cosy+1

D.x2-cosy+1

26.

27.設(shè)x是f(x)的一個(gè)原函數(shù),則f(x)=A.A.x2/2B.2x2

C.1D.C(任意常數(shù))

28.

A.

B.

C.

D.

29.

30.

31.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.

B.

C.

D.

32.

33.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

34.設(shè)函數(shù)f(x)=(1+x)ex,則函數(shù)f(x)()。

A.有極小值B.有極大值C.既有極小值又有極大值D.無極值

35.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上

A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值36.A.A.

B.

C.

D.

37.A.A.

B.

C.

D.

38.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件

39.

40.

41.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

42.

43.A.e2

B.e-2

C.1D.0

44.

45.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無水平漸近線,又無鉛直漸近線

46.設(shè)y=cos4x,則dy=()。A.

B.

C.

D.

47.設(shè)y=sin2x,則y等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x48.A.A.2B.-1/2C.1/2eD.(1/2)e1/2

49.下列等式成立的是()。

A.

B.

C.

D.

50.

二、填空題(20題)51.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。52.

53.

54.

55.設(shè)y=2x2+ax+3在點(diǎn)x=1取得極小值,則a=_____。

56.

57.

58.

59.微分方程y=0的通解為.

60.

61.

62.

63.∫(x2-1)dx=________。

64.

65.設(shè)Ф(x)=∫0xln(1+t)dt,則Ф"(x)=________。66.67.

68.設(shè)f(x)=xex,則f'(x)__________。

69.70.三、計(jì)算題(20題)71.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

72.73.74.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

75.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

76.求微分方程y"-4y'+4y=e-2x的通解.

77.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.78.將f(x)=e-2X展開為x的冪級數(shù).79.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

80.

81.

82.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.83.求微分方程的通解.84.求曲線在點(diǎn)(1,3)處的切線方程.

85.

86.證明:87.88.

89.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則90.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)91.

92.

93.

94.

95.

96.

97.

98.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。

99.設(shè)平面薄片的方程可以表示為x2+y2≤R2,x≥0,薄片上點(diǎn)(x,y)處的密度,求該薄片的質(zhì)量M.100.五、高等數(shù)學(xué)(0題)101.以下結(jié)論正確的是()。

A.∫f"(x)dx=f(x)

B.

C.∫df(z)=f(x)

D.d∫f(x)dx=f(x)dx

六、解答題(0題)102.

參考答案

1.C

2.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有

故應(yīng)選D.

3.B解析:

4.B

5.C

6.B

7.C本題考查的知識(shí)點(diǎn)為重要極限公式.

8.A

9.A

10.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為

y*=Qn(x)eαx,

Qn(x)為x的待定n次多項(xiàng)式.

當(dāng)α為單特征根時(shí),可設(shè)特解為

y*=xQn(x)eαx,

當(dāng)α為二重特征根時(shí),可設(shè)特解為

y*=x2Qn(x)eαx.

所給方程對應(yīng)齊次方程的特征方程為

r2-3r+2=0.

特征根為r1=1,r2=2.

自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.

11.C解析:

12.B

13.D

14.B

15.C本題考查的知識(shí)點(diǎn)為不定積分基本公式.

由于

可知應(yīng)選C.

16.C

17.D

18.D本題考查的知識(shí)點(diǎn)為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).

19.B對照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。

20.B

21.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.

22.A

23.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。

24.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).

由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

25.A

26.B

27.Cx為f(x)的一個(gè)原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。

28.D

故選D.

29.B

30.D解析:

31.C

32.C解析:

33.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).

已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個(gè)解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線性無關(guān)時(shí),C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.

本題中常見的錯(cuò)誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯(cuò)誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)線性無關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒有指出)y1,y2為線性無關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.

34.A因f(x)=(1+x)ex且處處可導(dǎo),于是,f'(x)=ex+(1+x)·ex=(x+2)ex,令f'(x)=0得駐點(diǎn)x=-2;又x<-2時(shí),f'(x)<0;x>-2時(shí),f'(x)>0;從而f(x)在i=-2處取得極小值,且f(x)只有一個(gè)極值.

35.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),

因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。

36.B

37.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

38.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過來卻不行,如函數(shù)f(x)=故選A。

39.C解析:

40.B

41.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

42.B

43.A

44.C

45.A

46.B

47.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.

48.B

49.C

50.D51.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。

52.本題考查的知識(shí)點(diǎn)為定積分的換元法.

53.7/5

54.

本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.

55.

56.

解析:

57.

58.59.y=C.

本題考查的知識(shí)點(diǎn)為微分方程通解的概念.

微分方程為y=0.

dy=0.y=C.

60.(03)(0,3)解析:

61.

62.

63.

64.x=2x=2解析:65.用變上限積分公式(∫0xf(t)dt)"=f(x),則Ф"(x)=ln(1+x),Ф"(x)=。66.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

67.

68.(1+x)ex

69.70.3yx3y-1

71.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

72.

73.

74.

75.

列表:

說明

76.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

77.函數(shù)的定義域?yàn)?/p>

注意

78.79.由二重積分物理意義知

80.81.由一階線性微分方程通解公式有

82.

83.84.曲線方程為,點(diǎn)(1,3)在曲

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論