專題07 等差數(shù)列的性質(zhì)及應(yīng)用(解析版)_第1頁(yè)
專題07 等差數(shù)列的性質(zhì)及應(yīng)用(解析版)_第2頁(yè)
專題07 等差數(shù)列的性質(zhì)及應(yīng)用(解析版)_第3頁(yè)
專題07 等差數(shù)列的性質(zhì)及應(yīng)用(解析版)_第4頁(yè)
專題07 等差數(shù)列的性質(zhì)及應(yīng)用(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第頁(yè)專題07等差數(shù)列的性質(zhì)及應(yīng)用【基本知識(shí)】等差數(shù)列的常用性質(zhì)(1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N*),d=eq\f(an-am,n-m)(n≠m).(2)等距性:若m+n=p+q(m,n,p,q∈N*),則am+an=ap+aq.特別地,若m+n=2p(m,n,p∈N*),則有am+an=2ap.(3)單調(diào)性:d>0?{an}為遞增數(shù)列,若d<0?{an}為遞減數(shù)列.d=0?{an}為常數(shù)列;(4)若{an}是等差數(shù)列,公差為d,則等距離取出若干項(xiàng)也構(gòu)成一個(gè)等差數(shù)列,即ak,ak+m,ak+2m,…(k,m∈N*)是公差為md的等差數(shù)列.(5)若{an},{bn}(項(xiàng)數(shù)相同)是等差數(shù)列,則{pan+qbn}也是等差數(shù)列.(6)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))也為等差數(shù)列,d=eq\f(\f(Sm,m)-\f(Sn,n),m-n)(n≠m).(7)等差數(shù)列{an}的前n項(xiàng)和為Sn,則Sn,S2n-Sn,S3n-S2n成等差數(shù)列,公差為nd.(8)若項(xiàng)數(shù)為2n,則S偶-S奇=nd,eq\f(S奇,S偶)=eq\f(an,an+1);(9)若項(xiàng)數(shù)為2n-1(n≥2),則S偶=(n-1)an,S奇=nan,S奇-S偶=an,eq\f(S奇,S偶)=eq\f(n,n-1).(10)兩個(gè)等差數(shù)列{an},{bn}的前n項(xiàng)和Sn,Tn之間的關(guān)系為eq\f(an,bn)=eq\f(S2n-1,T2n-1).考點(diǎn)一性質(zhì)(1)的應(yīng)用【基本題型】[例1](1)在等差數(shù)列{an}中,已知a3=10,a8=-20,則公差d等于()A.3B.-6C.4D.-3答案B解析由等差數(shù)列的性質(zhì)得所以d=eq\f(-20-10,5)=-6.(2)在等差數(shù)列{an}(n∈N*)中,若a1=a2+a4,a8=-3,則a20的值是________.答案-15解析∵數(shù)列{an}是等差數(shù)列,∴a1+a5=a2+a4,又a1=a2+a4,∴a5=0,∴d=eq\f(a8-a5,8-5)=eq\f(-3,3)=-1,故a20=a5+15d=-15.(3)已知{an}為等差數(shù)列,a15=8,a60=20,則a75=________.答案24解析利用an=am+(n-m)d)設(shè)數(shù)列{an}的公差為d,則a60=a15+(60-15)d=8+45d,所以d=eq\f(20-8,45)=eq\f(12,45)=eq\f(4,15),所以a75=a60+(75-60)d=20+15×eq\f(4,15)=24.(4)已知{bn}為等差數(shù)列,若b3=-2,b10=12,則b8=________.答案3004解析方法一∵{bn}為等差數(shù)列,∴可設(shè)其公差為d,則d=eq\f(b10-b3,10-3)=eq\f(12--2,7)=2,∴bn=b3+(n-3)d=2n-8.∴b8=2×8-8=8.方法二由eq\f(b8-b3,8-3)=eq\f(b10-b3,10-3)=d,得b8=eq\f(b10-b3,10-3)×5+b3=2×5+(-2)=8.(5)已知{an}為等差數(shù)列,且a100=304,a300=904,則a1000=________.答案3004解析因?yàn)閧an}為等差數(shù)列,則d=eq\f(904-304,300-100)=eq\f(a1000-904,1000-300),解得a1000=3004.(6)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=3,a5=5,則S7的值是()A.30B.29C.28D.27答案C解析由題意,設(shè)等差數(shù)列的公差為d,則d=eq\f(a5-a3,5-3)=1,故a4=a3+d=4,所以S7=eq\f(7a1+a7,2)=eq\f(7×2a4,2)=7×4=28.故選C.考點(diǎn)二性質(zhì)(2)的應(yīng)用【基本題型】[例2](1)在等差數(shù)列{an}中,若a3+a4+a5=3,a8=8,則a12的值是()A.15B.30C.31D.9答案A解析由a3+a4+a5=3及等差數(shù)列的性質(zhì),∴3a4=3,則a4=1.又a4+a12=2a8,得1+a12=2×8.∴a12=16-1=15.(2)在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=450,則a2+a8=________.答案180解析由等差數(shù)列的性質(zhì),得a3+a4+a5+a6+a7=5a5=450,∴a5=90,∴a2+a8=2a5=180.(3)等差數(shù)列an中,若a2,a2020為方程x2-10x+16=0的兩根,則a1+a1011+a2021等于()A.10B.15C.20D.40答案B解析∵a2,a2020為方程x2-10x+16=0的兩根,∴a2+a2020=10,由等差數(shù)列的性質(zhì)得2a1011=10,即a1011=5,∴a1+a1011+a2021=3a1011=15.(4)數(shù)列{an}滿足3+an=an+1且a2+a4+a6=9,則log6(a5+a7+a9)的值是()A.-2B.-eq\f(1,2)C.2D.eq\f(1,2)答案B解析答案C解析由3+an=an+1,得an+1-an=3.所以{an}是公差為3的等差數(shù)列.又a2+a4+a6=9,且a2+a6=2a4,所以3a4=9,則a4=3,所以a7=a4+3d=3+3×3=12,故log6(a5+a7+a9)=log6(3a7)=log636=2.(5)在等差數(shù)列{an}中,若aeq\o\al(2,2)+2a2a8+a6a10=16,則a4a6=________.答案4解析∵在等差數(shù)列{an}中,aeq\o\al(2,2)+2a2a8+a6a10=16,∴aeq\o\al(2,2)+a2(a6+a10)+a6a10=16,∴(a2+a6)(a2+a10)=16,∴2a4·2a6=16,∴a4a6=4.(6)等差數(shù)列{an},{bn}滿足對(duì)任意n∈N*都有eq\f(an,bn)=eq\f(2n+3,4n-9),則eq\f(a7,b3+b9)+eq\f(a5,b4+b8)=________.答案1解析由等差數(shù)列的性質(zhì)可得b3+b9=b4+b8=2b6,a7+a5=2a6,所以eq\f(a7,b3+b9)+eq\f(a5,b4+b8)=eq\f(2a6,2b6)=eq\f(a6,b6)=eq\f(2×6+3,4×6-9)=1.[例3](1)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a4,a10是方程x2-8x+1=0的兩根,則S13=()A.58B.54C.56D.52答案D解析∵a4,a10是方程x2-8x+1=0的兩根,∴a4+a10=8,∴a1+a13=8,∴S13=eq\f(13×(a1+a13),2)=eq\f(13×8,2)=52.(2)等差數(shù)列{an}中,a1+a4+a7=39,a3+a6+a9=27,則數(shù)列{an}的前9項(xiàng)和S9等于()A.99B.66C.144D.297答案A解析由等差數(shù)列的性質(zhì)可得a1+a7=2a4,a3+a9=2a6,又∵a1+a4+a7=39,a3+a6+a9=27,∴3a4=39,3a6=27,解得a4=13,a6=9,∴a4+a6=22,∴數(shù)列{an}的前9項(xiàng)和S9=eq\f(9(a1+a9),2)=eq\f(9(a4+a6),2)=eq\f(9×22,2)=99.(3)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知前6項(xiàng)和為36,最后6項(xiàng)的和為180,Sn=324(n>6),則數(shù)列{an}的項(xiàng)數(shù)為_(kāi)_______.答案18解析由題意知a1+a2+…+a6=36,①,an+an-1+an-2+…+an-5=180,②,①+②得(a1+an)+(a2+an-1)+…+(a6+an-5)=6(a1+an)=216,∴a1+an=36,又Sn=eq\f(n(a1+an),2)=324,∴18n=324,∴n=18.(4)在等差數(shù)列{an}中,S10=100,S100=10,則S110=________.答案解析方法一設(shè)數(shù)列{an}的公差為d,首項(xiàng)為a1,則eq\b\lc\{\rc\(\a\vs4\al\co1(10a1+\f(10×9,2)d=100,,100a1+\f(100×99,2)d=10,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a1=\f(1099,100),,d=-\f(11,50).))所以S110=110a1+eq\f(110×109,2)d=-110.方法二因?yàn)镾100-S10=eq\f(a11+a100×90,2)=-90,所以a11+a100=-2,所以S110=eq\f(a1+a110×110,2)=eq\f(a11+a100×110,2)=-110.(5)已知函數(shù)y=f(x+1)的圖象關(guān)于y軸對(duì)稱,且函數(shù)f(x)在(1,+∞)上單調(diào),若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a4)=f(a18),則{an}的前21項(xiàng)和為()A.0B.eq\f(25,2)C.21D.42答案C解析函數(shù)y=f(x+1)的圖象關(guān)于y軸對(duì)稱,平移可得y=f(x)的圖象關(guān)于直線x=1對(duì)稱,且函數(shù)f(x)在(1,+∞)上單調(diào),由數(shù)列{an}是公差不為0的等差數(shù)列,且f(a4)=f(a18),可得a4+a18=2,所以a1+a21=a4+a18=2,可得數(shù)列{an}的前21項(xiàng)和S21=eq\f(21(a1+a21),2)=21.故選C.(6)等差數(shù)列{an}的各項(xiàng)均不為零,其前n項(xiàng)和為Sn.若aeq\o\al(2,n+1)=an+2+an,則S2n+1=________.答案4n+2解析因?yàn)閧an}為等差數(shù)列,所以an+2+an=2an+1,又aeq\o\al(2,n+1)=an+2+an,所以aeq\o\al(2,n+1)=2an+1.因?yàn)閿?shù)列{an}的各項(xiàng)均不為零,所以an+1=2,所以S2n+1=eq\f((a1+a2n+1)(2n+1),2)=eq\f(2×an+1×(2n+1),2)=4n+2.(7)在數(shù)列{an}中,2an+1=an+an+2,且an≠0.若an-1-aeq\o\al(2,n)+an+1=0(n≥2),且S2n-1=38,則n=()A.38B.20C.10D.9答案C解析在數(shù)列{an}中,因?yàn)?an+1=an+an+2,所以an+2-an+1=an+1-an,所以數(shù)列{an}為等差數(shù)列.由an-1-aeq\o\al(2,n)+an+1=0(n≥2),得2an-aeq\o\al(2,n)=0,又an≠0,解得an=2.又S2n-1=38,即eq\f((2n-1)(a1+a2n-1),2)=(2n-1)an=38,即(2n-1)×2=38,解得n=10.(8)設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(1+an)2(n∈N*),則a5+a6+a7+a8=()A.24B.48C.64D.72答案B解析當(dāng)n=1時(shí),由S1=a1=eq\f((1+a1)2,4),得a1=1,當(dāng)n≥2時(shí),eq\b\lc\{(\a\vs4\al\co1(4Sn=(1+an)2,,4Sn-1=(1+an-1)2,))得4an=(1+an)2-(1+an-1)2,∴aeq\o\al(\s\up1(2),\s\do1(n))-aeq\o\al(\s\up1(2),\s\do1(n-1))-2an-2an-1=0,(an+an-1)(an-an-1-2)=0.∵an>0,∴an-an-1=2,∴{an}是等差數(shù)列,∴an=2n-1,∴a5+a6+a7+a8=2(a6+a7)=48.【對(duì)點(diǎn)精練】1.在等差數(shù)列{an}中,a4+a5=15,a7=12,則a2等于()A.3B.-3C.eq\f(3,2)D.-eq\f(3,2)1.答案A解析由數(shù)列的性質(zhì),得a4+a5=a2+a7,所以a2=15-12=3.2.已知等差數(shù)列{an}滿足a1+a2+a3+…+a101=0,則有()A.a(chǎn)1+a101>0B.a(chǎn)1+a101<0C.a(chǎn)3+a99=0D.a(chǎn)51=512.答案C解析由等差數(shù)列的性質(zhì)得,a1+a101=a2+a100=…=a50+a52=2a51,由于a1+a2+a3+…+a101=0,所以a51=0,故a3+a99=2a51=0.3.已知數(shù)列{an}是等差數(shù)列,若a1-a9+a17=7,則a3+a15等于()A.7B.14C.21D.7(n-1)3.答案B解析因?yàn)閍1-a9+a17=(a1+a17)-a9=2a9-a9=a9=7,所以a3+a15=2a9=2×7=14.4.在等差數(shù)列{an}中,a1+3a8+a15=120,則a2+a14的值為()A.6B.12C.24D.484.答案D解析∵在等差數(shù)列{an}中,a1+3a8+a15=120,由等差數(shù)列的性質(zhì),a1+3a8+a15=5a8=120,∴a8=24,∴a2+a14=2a8=48.5.已知等差數(shù)列{an},若a1+a2+a3+…+a12=21,則a2+a5+a8+a11=________.5.答案7解析∵a1+a2+a3+…+a12=21,∴a1+a12=a2+a11=a3+a10=a4+a9=a5+a8=a6+a7=eq\f(21,6)=eq\f(7,2),∴a2+a5+a8+a11=7.6.設(shè)數(shù)列{an}是等差數(shù)列,若a3+a4+a5=12,則a1+a2+…+a7等于()A.14B.21C.28D.356.答案C解析∵a3+a4+a5=3a4=12,∴a4=4,∴a1+a2+…+a7=7a4=28.7.在等差數(shù)列{an}中,若a4+a6+a8+a10+a12=120,則a9-eq\f(1,3)a11的值為()A.14B.15C.16D.177.答案C解析設(shè)公差為d,∵a4+a6+a8+a10+a12=120,∴5a8=120,a8=24,∴a9-eq\f(1,3)a11=(a8+d)-eq\f(1,3)(a8+3d)=eq\f(2,3)a8=16.8.已知等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若對(duì)于任意的自然數(shù)n,都有eq\f(Sn,Tn)=eq\f(2n-3,4n-3),則eq\f(a3+a15,2b3+b9)+eq\f(a3,b2+b10)=()A.eq\f(19,41)B.eq\f(17,37)C.eq\f(7,15)D.eq\f(20,41)8.答案A解析eq\f(a3+a15,2b3+b9)+eq\f(a3,b2+b10)=eq\f(2a9,2b1+b11)+eq\f(a3,b1+b11)=eq\f(a9+a3,b1+b11)=eq\f(a1+a11,b1+b11)=eq\f(\f(11a1+a11,2),\f(11b1+b11,2))=eq\f(S11,T11)=eq\f(2×11-3,4×11-3)=eq\f(19,41),故選A.9.在等差數(shù)列{an}中,已知a4+a8=16,則該數(shù)列前11項(xiàng)和S11等于()A.58B.88C.143D.1769.答案B解析S11=eq\f(11a1+a11,2)=eq\f(11a4+a8,2)=88.10.已知等差數(shù)列{an}中,其前n項(xiàng)和為Sn,若a3+a4+a5=42,則S7=()A.98B.49C.14D.14710.答案A解析因?yàn)閍3+a5=2a4,a3+a4+a5=42,所以a4=14,故S7=7·a4=7×14=98.11.在等差數(shù)列{an}中,2(a1+a3+a5)+3(a7+a9)=54,則此數(shù)列前10項(xiàng)的和S10等于()A.45B.60C.75D.9011.答案A解析由題意得a3+a8=9,∴S10=eq\f(10a1+a10,2)=eq\f(10a3+a8,2)=eq\f(10×9,2)=45.12.若一個(gè)等差數(shù)列前3項(xiàng)的和為34,最后3項(xiàng)的和為146,且所有項(xiàng)的和為390,則這個(gè)數(shù)列的項(xiàng)數(shù)為()A.13B.12C.11D.1012.答案A解析因?yàn)閍1+a2+a3=34,an-2+an-1+an=146,a1+a2+a3+an-2+an-1+an=34+146=180,又因?yàn)閍1+an=a2+an-1=a3+an-2,所以3(a1+an)=180,從而a1+an=60,所以Sn=eq\f(na1+an,2)=eq\f(n·60,2)=390,即n=13.13.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若eq\f(a6,a5)=eq\f(9,11),則eq\f(S11,S9)=()A.1B.-1C.2D.eq\f(1,2)13.答案A解析由于eq\f(S11,S9)=eq\f(11a6,9a5)=eq\f(11,9)×eq\f(9,11)=1.14.(多選)已知Sn是等差數(shù)列{an}(n∈N*)的前n項(xiàng)和,且S5>S6>S4.下列四個(gè)命題正確的是()A.?dāng)?shù)列{Sn}中的最大項(xiàng)為S10B.?dāng)?shù)列{an}的公差d<0C.S10>0D.S11<014.答案BCD解析因?yàn)镾5>S6>S4,所以a6<0,a5>0且a5+a6>0,所以數(shù)列{Sn}中的最大項(xiàng)為S5,A錯(cuò)誤;數(shù)列{an}的公差d<0,B正確;S10=eq\f((a1+a10)×10,2)=5(a5+a6)>0,C正確;S11=eq\f((a1+a11)×11,2)=11a6<0,D正確.故選BCD.15.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a4=4,S13=104,則a10=()A.10B.12C.16D.2015.答案解析法二:因?yàn)镾13=eq\f(13(a4+a10),2)=104,a4=4,所以a10=12,故選B.法三:因?yàn)镾13=eq\f(13×2a7,2)=104,所以a7=8,又a4,a7,a10成等差數(shù)列,a4=4,所以a10=12,故選B.16.已知等差數(shù)列{an}中,a1=1,前10項(xiàng)和等于前5項(xiàng)和,若am+a6=0,則m=()A.10B.9C.8D.216.答案A解析記數(shù)列{an}的前n項(xiàng)和為Sn,由題意S10=S5,所以S10-S5=a6+a7+a8+a9+a10=0,又a6+a10=a7+a9=2a8,于是a8=0,又am+a6=0,所以m+6=2×8,解得m=10.17.已知Sn是數(shù)列{an}的前n項(xiàng)和,且Sn+1=Sn+an+3,a4+a5=23,則S8=()A.72B.88C.92D.9817.答案C解析由Sn+1=Sn+an+3得an+1-an=3,數(shù)列{an}是公差為3的等差數(shù)列,則S8=eq\f(8a1+a8,2)=eq\f(8a4+a5,2)=92.故選C.考點(diǎn)三性質(zhì)(6)的應(yīng)用【基本題型】[例4](1)已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1=-2020,eq\f(S2022,2022)-eq\f(S2016,2016)=6,則S2022=________.答案2022解析等差數(shù)列的性質(zhì)可得{eq\f(Sn,n)}也為等差數(shù)列,設(shè)其公差為d.則eq\f(S2022,2022)-eq\f(S2016,2016)=6d=6,∴d=1.故eq\f(S2022,2022)=eq\f(S1,1)+2021d=-2020+2021=1,∴S2022=1×2022=2022.(2)等差數(shù)列{an}中,已知Sn是其前n項(xiàng)和,a1=-9,eq\f(S9,9)-eq\f(S7,7)=2,則an=________,S10=________.答案2n-110解析設(shè)等差數(shù)列{an}的公差為d,∵eq\f(S9,9)-eq\f(S7,7)=2,∴eq\f(9-1,2)d-eq\f(7-1,2)d=2,∴d=2,∵a1=-9,∴an=-9+2(n-1)=2n-11,S10=10×(-9)+eq\f(10×9,2)×2=0.(3)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=()A.3B.4C.5D.6答案C解析解法一:由題意,知Sm=eq\f(ma1+am,2)=0,∴a1=-am=-(Sm-Sm-1)=-2,∴am=2,a1=-2.又am+1=Sm+1-Sm=3,∴公差d=am+1-am=1,∴3=am+1=a1+md=-2+m,∴m=5.解法二:∵數(shù)列{an}為等差數(shù)列,且前n項(xiàng)和為Sn,∴數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))也為等差數(shù)列.∴eq\f(Sm-1,m-1)+eq\f(Sm+1,m+1)=eq\f(2Sm,m),即eq\f(-2,m-1)+eq\f(3,m+1)=0,解得m=5.經(jīng)檢驗(yàn)為原方程的解.故選C.(4)已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S10=100,S100=10,則S110的值為_(kāi)_______.答案-110解析由eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))也是等差數(shù)列,構(gòu)造新的等差數(shù)列b1=eq\f(S10,10)=10,b10=eq\f(S100,100)=eq\f(1,10),則d=eq\f(1,9)(b10-b1)=eq\f(1,9)eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(99,10)))=-eq\f(11,10),所以b11=eq\f(S110,110)=b10+d=eq\f(1,10)+eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(11,10)))=-1,所以S110=-110.【對(duì)點(diǎn)精練】1.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1=-2,eq\f(S2022,2022)-eq\f(S2020,2020)=2,則eq\f(S2021,2021)=________.1.答案2018解析∵Sn是等差數(shù)列{an}的前n項(xiàng)和,∴eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))是等差數(shù)列,設(shè)其公差為d.∵eq\f(S2022,2022)-eq\f(S2020,2020)=2,∴2d=2,d=1.∵a1=-2,∴eq\f(S1,1)=-2.∴eq\f(Sn,n)=-2+(n-1)×1=n-3.∴eq\f(S2021,2021)=2018.2.在等差數(shù)列{an}中,a1=1,其前n項(xiàng)和為Sn,若eq\f(S8,8)-eq\f(S6,6)=2,則S10等于()A.10B.100C.110D.1202.答案B解析∵{an}是等差數(shù)列,a1=1,∴eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))也是等差數(shù)列且首項(xiàng)為eq\f(S1,1)=1.又eq\f(S8,8)-eq\f(S6,6)=2,∴eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))的公差是1,∴eq\f(S10,10)=1+(10-1)×1=10,∴S10=100.3.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若Sn=33,S2n=44,則S6n的值為_(kāi)_______.3.答案-132解析由題意知,d=eq\f(\f(44,2n)-\f(33,n),2n-n)=eq\f(\f(S6n,6n)-\f(44,2n),6n-2n),解得S6n=-132.4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a2=11,eq\f(S15,15)-eq\f(S7,7)=-8,則Sn取最大值時(shí)的n為()A.6B.7C.8D.94.答案B解析設(shè)數(shù)列{an}是公差為d的等差數(shù)列,則eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))是公差為eq\f(d,2)的等差數(shù)列.因?yàn)閑q\f(S15,15)-eq\f(S7,7)=-8,故可得8×eq\f(d,2)=-8,解得d=-2;則a1=a2-d=13,則Sn=-n2+14n=-(n-7)2+49,故當(dāng)n=7時(shí),Sn取得最大值.考點(diǎn)四性質(zhì)(7)的應(yīng)用【基本題型】[例5](1)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=9,S6=36,則a7+a8+a9等于()A.63B.45C.36D.27答案B解析由{an}是等差數(shù)列,得S3,S6-S3,S9-S6為等差數(shù)列.即2(S6-S3)=S3+(S9-S6),得到S9-S6=2S6-3S3=45,故選B.(2)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S10=10,S20=30,則S30=________.答案60解析∵S10,S20-S10,S30-S20成等差數(shù)列,∴2(S20-S10)=S10+S30-S20,∴40=10+S30-30,∴S30=60.(3)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=-12,S9=45,則S12=__________.答案114解析因?yàn)閧an}是等差數(shù)列,所以S3,S6-S3,S9-S6,S12-S9成等差數(shù)列,所以2(S6-S3)=S3+(S9-S6),即2(S6+12)=-12+(45-S6),解得S6=3.又2(S9-S6)=(S6-S3)+(S12-S9),即2×(45-3)=(3+12)+(S12-45),解得S12=114.(4)已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S10=100,S100=10,則S110=__________.答案-110解析∵S10,S20-S10,S30-S20,…,S100-S90,S110-S100,…成等差數(shù)列,設(shè)公差為d,∴該數(shù)列的前10項(xiàng)和為10×100+eq\f(10×9,2)d=S100=10,解得d=-22,∴前11項(xiàng)和S110=11×100+eq\f(11×10,2)×(-22)=-110.(5)若等差數(shù)列{an}的前m項(xiàng)的和Sm為20,前3m項(xiàng)的和S3m為90,則它的前2m項(xiàng)的和S2m為()A.30B.70C.50D.60答案C解析∵等差數(shù)列{an}中,Sm,S2m-Sm,S3m-S2m也成等差數(shù)列,∴2(S2m-Sm)=Sm+S3m-S2m,∴2(S2m-20)=20+90-S2m,∴S2m=50.【對(duì)點(diǎn)精練】1.等差數(shù)列{an}中,S3=3,S6=9,則S12等于()A.12B.18C.24D.301.答案D解析根據(jù)題意,得在等差數(shù)列{an}中,S3,S6-S3,S9-S6,S12-S9,…也成等差數(shù)列,又由S3=3,S6=9,得S6-S3=6,則S9-S6=9,S12-S9=12,則S12=S3+(S6-S3)+(S9-S6)+(S12-S9)=3+6+9+12=30.2.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,S10=16,S100-S90=24,則S100=________.2.答案200解析依題意,S10,S20-S10,S30-S20,…,S100-S90依次成等差數(shù)列,設(shè)該等差數(shù)列的公差為d.又S10=16,S100-S90=24,因此S100-S90=24=16+(10-1)d=16+9d,解得d=eq\f(8,9),因此S100=10S10+eq\f(10×9,2)d=10×16+eq\f(10×9,2)×eq\f(8,9)=200.3.等差數(shù)列{an}的前m項(xiàng)和為30,前2m項(xiàng)和為100,則數(shù)列{an}的前3m項(xiàng)的和S3m=__________.3.答案-110解析方法一在等差數(shù)列中,∵Sm,S2m-Sm,S3m-S2m成等差數(shù)列,∴30,70,S3m-100成等差數(shù)列.∴2×70=30+(S3m-100),∴S3m=210.方法二在等差數(shù)列中,eq\f(Sm,m),eq\f(S2m,2m),eq\f(S3m,3m)成等差數(shù)列,∴eq\f(2S2m,2m)=eq\f(Sm,m)+eq\f(S3m,3m).即S3m=3(S2m-Sm)=3×(100-30)=210.4.已知在等差數(shù)列{an}中,Sn為其前n項(xiàng)和,已知S3=9,a4+a5+a6=7,則S9-S6=________.4.答案5解析∵S3,S6-S3,S9-S6成等差數(shù)列,而S3=9,S6-S3=a4+a5+a6=7,∴S9-S6=5.5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若eq\f(S3,S6)=eq\f(1,4),則eq\f(S6,S12)等于()A.eq\f(1,8)B.eq\f(7,26)C.eq\f(1,4)D.eq\f(1,2)5.答案C解析由等差數(shù)列的性質(zhì)知S3,S6-S3,S9-S6,S12-S9成等差數(shù)列,設(shè)S3=k,S6=4k(k≠0),則S9=3S6-3S3=9k,S12=3S9-3S6+S3=16k,所以eq\f(S6,S12)=eq\f(1,4).考點(diǎn)五性質(zhì)(10)的應(yīng)用【基本題型】[例6](1)等差數(shù)列{an}與{bn}的前n項(xiàng)和分別為Sn和Tn,若eq\f(Sn,Tn)=eq\f(3n-2,2n+1),則eq\f(a7,b7)等于()A.eq\f(37,27)B.eq\f(19,14)C.eq\f(39,29)D.eq\f(4,3)答案A解析eq\f(a7,b7)=eq\f(2a7,2b7)=eq\f(a1+a13,b1+b13)=eq\f(\f(a1+a13,2)×13,\f(b1+b13,2)×13)=eq\f(S13,T13)=eq\f(3×13-2,2×13+1)=eq\f(37,27).(2)已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和Bn,且eq\f(An,Bn)=eq\f(7n+45,n+3),則使得eq\f(an,bn)為整數(shù)的正整數(shù)n的個(gè)數(shù)是()A.2B.3C.4D.5答案D解析eq\f(an,bn)=eq\f(2an,2bn)=eq\f(\f(2n-1a1+a2n-1,2),\f(2n-1b1+b2n-1,2))=eq\f(A2n-1,B2n-1)=eq\f(14n+38,2n+2)=eq\f(7n+19,n+1)=7+eq\f(12,n+1),驗(yàn)證知,當(dāng)n=1,2,3,5,11時(shí)eq\f(an,bn)為整數(shù).(3)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若eq\f(an,bn)=eq\f(2n,3n+1),則eq\f(S21,T21)=__________.答案eq\f(11,17)解析由eq\f(an,bn)=eq\f(2an,2bn)=eq\f(a1+a2n-1,b1+b2n-1)=eq\f(\f(2n-1a1+a2n-1,2),\f(2n-1b1+b2n-1,2))=eq\f(S2n-1,T2n-1)=eq\f(2n,3n+1).則eq\f(S21,T21)=eq\f(S2×11-1,T2×11-1)=eq\f(a11,b11)=eq\f(2×11,3×11+1)=eq\f(11,17).(4)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若對(duì)任意正整數(shù)n都有eq\f(Sn,Tn)=eq\f(2n-1,3n-2),則eq\f(a11,b6+b10)+eq\f(a5,b7+b9)的值為_(kāi)_______.答案eq\f(29,43)解析eq\f(a11,b6+b10)+eq\f(a5,b7+b9)=eq\f(a11+a5,2b8)=eq\f(2a8,2b8)=eq\f(a8,b8),∴eq\f(a8,b8)=eq\f(S2×8-1,T2×8-1)=eq\f(S15,T15)=eq\f(2×15-1,3×15-2)=eq\f(29,43).【對(duì)點(diǎn)精練】1.已知數(shù)列{an},{bn}均為等差數(shù)列,且前n項(xiàng)和分別為Sn和Tn,若eq\f(Sn,Tn)=eq\f(3n+2,n+1),則eq\f(a5,b5)等于()A.eq\f(29,5)B.eq\f(29,10)C.eq\f(28,5)D.eq\f(28,10)1.答案B解析根據(jù)等差數(shù)列的性質(zhì)和前n項(xiàng)和公式,有eq\f(a5,b5)=eq\f(2a5,2b5)=eq\f(\f(9(a1+a9),2),\f(9(b1+b9),2))=eq\f(S9,T9)=eq\f(3×9+2,9+1)=eq\f(29,10).故選B.2.設(shè)Sn,Tn分別是等差數(shù)列{an},{bn}的前n項(xiàng)和,若a5=2b5,則eq\f(S9,T9)=________.2.答案2解析由a5=2b5,得eq\f(a5,b5)=2,所以eq\f(S9,T9)=eq\f(\f(9(a1+a9),2),\f(9(b1+b9),2))=eq\f(a5,b5)=2.3.等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn和Tn,若eq\f(Sn,Tn)=eq\f(2n+1,3n+2),則eq\f(a3+a11+a19,b7+b15)=________.3.答案eq\f(129,130)解析原式=eq\f(3a11,2b11)=eq\f(3,2)·eq\f(2a11,2b11)=eq\f(3,2)·eq\f(a1+a21,b1+b21)=eq\f(3,2)·eq\f(S21,T21)=eq\f(3,2)·eq\f(2×21+1,3×21+2)=eq\f(129,130).4.設(shè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若對(duì)任意自然數(shù)n都有eq\f(Sn,Tn)=eq\f(2n-3,4n-3

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論