版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年四川省巴中市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________一、單選題(40題)1.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
2.A.A.
B.
C.
D.
3.A.A.
B.
C.
D.
4.A.0B.1C.∞D(zhuǎn).不存在但不是∞
5.
6.
7.
8.設(shè)y=exsinx,則y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
9.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-210.設(shè)函數(shù)f(x)滿足f'(sin2x=cos2x,且f(0)=0,則f(x)=()A.
B.
C.
D.
11.曲線y=1nx在點(diǎn)(e,1)處切線的斜率為().A.A.e2
B.eC.1D.1/e12.當(dāng)x→0時(shí),x2是2x的A.A.低階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.高階無(wú)窮小
13.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
14.
15.
16.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
17.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C18.
19.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
20.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]21.A.A.5B.3C.-3D.-5
22.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
23.
24.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。
A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)25.下列關(guān)系正確的是()。A.
B.
C.
D.
26.A.
B.
C.-cotx+C
D.cotx+C
27.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
28.
A.
B.1
C.2
D.+∞
29.()。A.
B.
C.
D.
30.
31.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.
B.
C.
D.
32.
33.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。
A.eB.1C.1+e2
D.ln234.A.
B.
C.
D.
35.
36.
37.A.A.
B.
C.
D.
38.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
39.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
40.
二、填空題(50題)41.42.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則x2dxdy化為極坐標(biāo)系下的二重積分的表達(dá)式為_(kāi)_______。
43.微分方程y"-y'=0的通解為_(kāi)_____.
44.級(jí)數(shù)的收斂半徑為_(kāi)_____.45.46.
47.
48.
49.
50.
51.
52.
53.
54.55.
56.設(shè)f(x)=sin(lnx),求f(x)=__________.
57.
58.
59.
60.設(shè)y1(x)、y2(x)是二階常系數(shù)線性微分方程y″+py′+qy=0的兩個(gè)線性無(wú)關(guān)的解,則它的通解為_(kāi)_____.
61.
62.
63.若∫x0f(t)dt=2e3x-2,則f(x)=________。
64.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為_(kāi)_____.65.66.67.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為_(kāi)_____.68.冪級(jí)數(shù)
的收斂半徑為_(kāi)_______。69.設(shè),則y'=______。
70.過(guò)點(diǎn)M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線方程為_(kāi)________。
71.72.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為.73.微分方程y"=y的通解為_(kāi)_____.74.75.76.
77.
78.
79.
80.
81.微分方程dy+xdx=0的通解為y=__________.
82.
83.
84.
85.86.曲線y=x3-6x的拐點(diǎn)坐標(biāo)為_(kāi)_____.
87.
88.
89.
90.
三、計(jì)算題(20題)91.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).92.求曲線在點(diǎn)(1,3)處的切線方程.93.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則94.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.95.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
96.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).97.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.98.99.
100.101.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
102.
103.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
104.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.105.
106.
107.求微分方程的通解.108.
109.證明:
110.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)111.
112.
113.(本題滿分8分)設(shè)y=x+arctanx,求y.
114.
115.
116.求∫xlnxdx。
117.
118.
119.
120.求微分方程y"+9y=0的通解。
五、高等數(shù)學(xué)(0題)121.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對(duì)六、解答題(0題)122.求y=xlnx的極值與極值點(diǎn).
參考答案
1.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。
2.C
3.D本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
當(dāng)f(x)為連續(xù)函數(shù),φ(x)為可導(dǎo)函數(shù)時(shí),
因此應(yīng)選D.
4.D
5.C
6.D
7.C
8.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
9.A由于
可知應(yīng)選A.
10.D
11.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).
由于y=lnx,可知可知應(yīng)選D.
12.D
13.C
14.A
15.D
16.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
17.C
18.C
19.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
20.B∵一1≤x一1≤1∴0≤x≤2。
21.Cf(x)為分式,當(dāng)x=-3時(shí),分式的分母為零,f(x)沒(méi)有定義,因此
x=-3為f(x)的間斷點(diǎn),故選C。
22.C
23.A
24.A
25.B由不定積分的性質(zhì)可知,故選B.
26.C本題考查的知識(shí)點(diǎn)為不定積分基本公式.
27.C
28.C
29.D
30.C解析:
31.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.
由于在極坐標(biāo)系下積分區(qū)域D可以表示為
0≤θ≤π,0≤r≤a.
因此
故知應(yīng)選A.
32.A
33.C
34.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
35.D解析:
36.A
37.A
38.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
39.D考查了函數(shù)的單調(diào)區(qū)間的知識(shí)點(diǎn).
y=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增。
40.C
41.42.因?yàn)镈:x2+y2≤a2(a>0),y≥0,所以令且0≤r≤a,0≤0≤π,則=∫0πdθ∫0acos2θ.rdr=∫0πdθ∫0ar3cos2θdr。
43.y=C1+C2exy=C1+C2ex
解析:本題考查的知識(shí)點(diǎn)為二階級(jí)常系數(shù)線性微分方程的求解.
特征方程為r2-r=0,
特征根為r1=0,r2=1,
方程的通解為y=C1+C2ex.
44.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給級(jí)數(shù)為缺項(xiàng)情形,由于
45.
本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.
考生只需熟記導(dǎo)數(shù)運(yùn)算的法則
46.
47.11解析:
48.
49.5/2
50.(12)
51.
本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.
注意若u,v可微,則
52.
53.
54.55.ln(1+x)+C本題考查的知識(shí)點(diǎn)為換元積分法.
56.
57.
58.
59.60.由二階線性常系數(shù)微分方程解的結(jié)構(gòu)可知所給方程的通解為
其中C1,C2為任意常數(shù).
61.dx
62.-1
63.6e3x64.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過(guò)該點(diǎn)的切線方程為
y-f(x0)=f'(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為
y=f(1)=0.
本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫(xiě)為
y-f(x0)=f'(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫(xiě)為
y-f(1)=f'(x)(x-1).
本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫(xiě)f(1),有些人誤寫(xiě)切線方程為
y-1=0.
65.1本題考查了無(wú)窮積分的知識(shí)點(diǎn)。66.1.
本題考查的知識(shí)點(diǎn)為反常積分,應(yīng)依反常積分定義求解.
67.0本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.
通常求解的思路為:
先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點(diǎn)x1,…,xk.
比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點(diǎn).
由y=x3-2x+1,可得
Y'=3x2-2.
令y'=0得y的駐點(diǎn)為,所給駐點(diǎn)皆不在區(qū)間(1,2)內(nèi),且當(dāng)x∈(1,2)時(shí)有
Y'=3x2-2>0.
可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點(diǎn)為x=1,最小值為f(1)=0.
注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.
本題中常見(jiàn)的錯(cuò)誤是,得到駐點(diǎn)和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯(cuò)誤地比較
從中確定f(x)在[1,2]上的最小值.則會(huì)得到錯(cuò)誤結(jié)論.68.所給冪級(jí)數(shù)為不缺項(xiàng)情形,可知ρ=1,因此收斂半徑R==1。69.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
70.
71.解析:72.y=f(1).
本題考查的知識(shí)點(diǎn)有兩個(gè):-是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過(guò)該點(diǎn)的切線方程為
y-f(x0)=f(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f(x0)=0,故所求切線方程為
y—f(1)=0.
本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫(xiě)為
y-f(x0)=f(x)(x-x0)
而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫(xiě)為
y-f(1)=f(x)(x-1).
本例中由于f(x)為抽象函數(shù),-些考生不習(xí)慣于寫(xiě)f(1),有些人誤寫(xiě)切線方程為
y-1=0.73.y'=C1e-x+C2ex
;本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.
將方程變形,化為y"-y=0,
特征方程為r2-1=0;
特征根為r1=-1,r2=1.
因此方程的通解為y=C1e-x+C2ex.
74.
本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
75.
76.
77.
78.π/4
79.
80.-2sin2-2sin2解析:
81.
82.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.
83.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
84.-2
85.
86.(0,0)本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的一般步驟,只需
(1)先求出y".
(2)令y"=0得出x1,…,xk.
(3)判定在點(diǎn)x1,x2,…,xk兩側(cè),y"的符號(hào)是否異號(hào).若在xk的兩側(cè)y"異號(hào),則點(diǎn)(xk,f(xk)為曲線y=f(x)的拐點(diǎn).
y=x3-6x,
y'=3x2-6,y"=6x.
令y"=0,得到x=0.當(dāng)x=0時(shí),y=0.
當(dāng)x<0時(shí),y"<0;當(dāng)x>0時(shí),y">0.因此點(diǎn)(0,0)為曲線y=x3-6x的拐點(diǎn).
本題出現(xiàn)較多的錯(cuò)誤為:填x=0.這個(gè)錯(cuò)誤產(chǎn)生的原因是對(duì)曲線拐點(diǎn)的概念不清楚.拐點(diǎn)的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點(diǎn)稱(chēng)之為曲線的拐點(diǎn).其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號(hào)之后,再求出f(x0),則拐點(diǎn)為(x0,f(x0)).
注意極值點(diǎn)與拐點(diǎn)的不同之處!
87.3
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《離婚法律程序執(zhí)行細(xì)則協(xié)議》版
- 二零二五版保險(xiǎn)及期貨居間業(yè)務(wù)委托管理合同3篇
- 二零二五年度智慧社區(qū)商業(yè)配套租賃協(xié)議3篇
- 二零二五年度集成墻板原材料期貨交易與風(fēng)險(xiǎn)管理合同2篇
- 二零二五年度高端人才引進(jìn)與培養(yǎng)合同5篇
- 臨時(shí)建筑建設(shè)合同樣本2024年版版B版
- 2025年度智能廚房設(shè)備研發(fā)、安裝與培訓(xùn)服務(wù)合同3篇
- 二零二五版公共工程合同擔(dān)保制度及操作細(xì)則3篇
- 二零二五年電子設(shè)備采購(gòu)與技術(shù)服務(wù)合同2篇
- 2024年簡(jiǎn)化版資金借用協(xié)議范本版B版
- DB-T29-74-2018天津市城市道路工程施工及驗(yàn)收標(biāo)準(zhǔn)
- 小學(xué)一年級(jí)20以?xún)?nèi)加減法混合運(yùn)算3000題(已排版)
- 智慧工廠數(shù)字孿生解決方案
- 病機(jī)-基本病機(jī) 邪正盛衰講解
- 品管圈知識(shí) 課件
- 非誠(chéng)不找小品臺(tái)詞
- 2024年3月江蘇省考公務(wù)員面試題(B類(lèi))及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護(hù)理風(fēng)險(xiǎn)防控PPT
- 充電樁采購(gòu)安裝投標(biāo)方案(技術(shù)方案)
- 醫(yī)院科室考勤表
評(píng)論
0/150
提交評(píng)論