版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年四川省樂山市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(40題)1.A.A.3yx3y-1
B.yx3y-1
C.x3ylnx
D.3x3ylnx
2.
3.
4.
5.
6.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無(wú)關(guān)條件
7.
A.arcsinb-arcsina
B.
C.arcsinx
D.0
8.微分方程y'=x的通解為A.A.2x2+C
B.x2+C
C.(1/2)x2+C
D.2x+C
9.
10.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
11.
12.
13.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
14.當(dāng)α<x<b時(shí),f'(x)<0,f'(x)>0。則在區(qū)間(α,b)內(nèi)曲線段y=f(x)的圖形A.A.沿x軸正向下降且為凹B.沿x軸正向下降且為凸C.沿x軸正向上升且為凹D.沿x軸正向上升且為凸
15.
16.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3
17.A.A.2
B.1
C.1/2e
D.
18.在企業(yè)中,財(cái)務(wù)主管與財(cái)會(huì)人員之間的職權(quán)關(guān)系是()
A.直線職權(quán)關(guān)系B.參謀職權(quán)關(guān)系C.既是直線職權(quán)關(guān)系又是參謀職權(quán)關(guān)系D.沒有關(guān)系
19.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
20.
21.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
22.
23.個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則是發(fā)生在()
A.前慣例層次B.慣例層次C.原則層次D.以上都不是
24.
25.設(shè)y=lnx,則y″等于().
A.1/x
B.1/x2
C.-1/x
D.-1/x2
26.
27.微分方程y''-2y'=x的特解應(yīng)設(shè)為A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+C
28.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。
A.eB.1C.1+e2
D.ln229.設(shè)z=ysinx,則等于().A.A.-cosxB.-ycosxC.cosxD.ycosx30.設(shè)是正項(xiàng)級(jí)數(shù),且un<υn(n=1,2,…),則下列命題正確的是()
A.B.C.D.31.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
32.若函數(shù)f(x)=5x,則f'(x)=
A.5x-1
B.x5x-1
C.5xln5
D.5x
33.A.A.0B.1/2C.1D.∞
34.過點(diǎn)(0,2,4)且平行于平面x+2z=1,y-3z=2的直線方程為
A.
B.
C.
D.-2x+3(y-2)+z-4=0
35.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x
B.(Ax+B)e2x
C.Ax2e2x
D.x(Ax+B)e2x
36.
37.設(shè)z=y2x,則等于().A.2xy2x-11
B.2y2x
C.y2xlny
D.2y2xlny
38.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
39.
40.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
二、填空題(50題)41.
42.已知∫01f(x)dx=π,則∫01dx∫01f(x)f(y)dy=________。
43.
44.
45.46.
47.
48.
49.設(shè)=3,則a=________。50.y″+5y′=0的特征方程為——.
51.
52.
53.
54.
55.函數(shù)的間斷點(diǎn)為______.56.過原點(diǎn)且與直線垂直的平面方程為______.57.
58.
59.
60.微分方程y=0的通解為.
61.
62.63.設(shè)y=3+cosx,則y=.
64.
65.微分方程y'+4y=0的通解為_________。
66.設(shè)f(x,y,z)=xyyz,則
=_________.
67.
68.設(shè)y=sin2x,則dy=______.
69.
70.
71.
72.
73.
74.
75.
76.微分方程exy'=1的通解為______.77.設(shè)y=1nx,則y'=__________.78.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f'(0)=______.
79.已知f(0)=1,f(1)=2,f(1)=3,則∫01xf"(x)dx=________。
80.y'=x的通解為______.
81.
82.若當(dāng)x→0時(shí),2x2與為等價(jià)無(wú)窮小,則a=______.
83.
84.設(shè)y=2x2+ax+3在點(diǎn)x=1取得極小值,則a=_____。
85.
86.
87.
88.
89.
90.
三、計(jì)算題(20題)91.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.92.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
93.94.95.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.96.將f(x)=e-2X展開為x的冪級(jí)數(shù).97.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).98.求微分方程的通解.
99.
100.證明:
101.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
102.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.103.
104.105.
106.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
107.求微分方程y"-4y'+4y=e-2x的通解.
108.
109.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則110.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)111.
112.函數(shù)y=y(x)由方程ey=sin(x+y)確定,求dy.
113.
114.
115.
116.
117.
118.
119.
120.
五、高等數(shù)學(xué)(0題)121.已知直線x=a將拋物線x=y2與直線x=1圍成平面圖形分成面積相等的兩部分,求a的值。
六、解答題(0題)122.設(shè)y=3x+lnx,求y'.
參考答案
1.D
2.C
3.B解析:
4.D
5.A
6.D
7.D
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
故應(yīng)選D.
8.C
9.C
10.C
11.B
12.A
13.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.
注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.
由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.
14.A由于在(α,b)內(nèi)f'(x)<0,可知f(x)單調(diào)減少。由于f"(x)>0,
可知曲線y=f'(x)在(α,b)內(nèi)為凹,因此選A。
15.B
16.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.
17.B
18.A解析:直線職權(quán)是指管理者直接指導(dǎo)下屬工作的職權(quán)。財(cái)務(wù)主管與財(cái)會(huì)人員之間是直線職權(quán)關(guān)系。
19.D
20.C
21.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
22.A
23.C解析:處于原則層次的個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則。
24.A
25.D由于Y=lnx,可得知,因此選D.
26.A解析:
27.C因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
28.C
29.C本題考查的知識(shí)點(diǎn)為高階偏導(dǎo)數(shù).
由于z=ysinx,因此
可知應(yīng)選C.
30.B由正項(xiàng)級(jí)數(shù)的比較判別法可以得到,若小的級(jí)數(shù)發(fā)散,則大的級(jí)數(shù)必發(fā)散,故選B。
31.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。
由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。
可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。
32.C本題考查了導(dǎo)數(shù)的基本公式的知識(shí)點(diǎn)。f'(x)=(5x)'=5xln5.
33.A
34.C
35.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:
若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為
y*=Qn(x)eαx,
Qn(x)為x的待定n次多項(xiàng)式.
當(dāng)α為單特征根時(shí),可設(shè)特解為
y*=xQn(x)eαx,
當(dāng)α為二重特征根時(shí),可設(shè)特解為
y*=x2Qn(x)eαx.
所給方程對(duì)應(yīng)齊次方程的特征方程為
r2-3r+2=0.
特征根為r1=1,r2=2.
自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.
36.B
37.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.
z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有
可知應(yīng)選D.
38.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
39.C解析:
40.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
41.
42.π2因?yàn)椤?1f(x)dx=π,所以∫01dx∫01(x)f(y)dy=∫01f(x)dx∫01f(y)dy=(∫01f(x)dx)2=π2。43.2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.
由于所給極限為“”型極限,由極限四則運(yùn)算法則有
44.
45.
46.
47.y=-e-x+C
48.00解析:
49.50.由特征方程的定義可知,所給方程的特征方程為
51.
52.
53.1/21/2解析:
54.
解析:55.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).
僅當(dāng),即x=±1時(shí),函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點(diǎn)。56.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0
57.
58.1/2
59.260.y=C.
本題考查的知識(shí)點(diǎn)為微分方程通解的概念.
微分方程為y=0.
dy=0.y=C.
61.11解析:62.1/2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.
由于
63.-sinX.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)運(yùn)算.
64.
65.y=Ce-4x
66.=xylnx.yz+xy.zyz-1=xyz-1y(ylnx+z)。
67.268.2cos2xdx這類問題通常有兩種解法.
解法1利用公式dy=y'dx,先求y',由于y'=cos2x·(2x)'2cos2x,
因此dy=2cos2xdx.
解法2利用微分運(yùn)算公式
dy=d(sin2x)=cos2x·d(2x)=2cos2xdx.
69.
70.
71.
解析:
72.7/5
73.2m2m解析:
74.
75.
解析:76.y=-e-x+C本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
由于方程為exy'=1,先變形為
變量分離dy=e-xdx.
兩端積分
為所求通解.
77.78.0本題考查的知識(shí)點(diǎn)為極值的必要條件.
由于y=f(x)在點(diǎn)x=0可導(dǎo),且x=0為f(x)的極值點(diǎn),由極值的必要條件可知有f'(0)=0.
79.2由題設(shè)有∫01xf"(x)dx=∫01xf"(x)=xf"(x)|01-|01f"(x)dx=f"(1)-f(x)|01=f"(1)-f(1)+f(0)=3-2+1=2。
80.本題考查的知識(shí)點(diǎn)為:求
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《客戶跟蹤技巧》課件
- 《chapter固定資產(chǎn)》課件
- 《肩關(guān)節(jié)鏡簡(jiǎn)介》課件
- 單位管理制度合并選集【人事管理篇】
- 2024第八屆全國(guó)職工職業(yè)技能大賽(網(wǎng)約配送員)網(wǎng)上練兵考試題庫(kù)-中(多選題)
- 單位管理制度分享匯編人事管理篇
- 單位管理制度分享大全人力資源管理篇十篇
- 單位管理制度范例選集人力資源管理篇十篇
- 單位管理制度呈現(xiàn)合集人事管理十篇
- 《電子欺騙》課件
- Cinema 4D從入門到精通PPT完整版全套教學(xué)課件
- T-SHSPTA 002-2023 藥品上市許可持有人委托銷售管理規(guī)范
- 我國(guó)雙語(yǔ)教育發(fā)展現(xiàn)狀以及建議
- 放射治療技術(shù)常用放射治療設(shè)備課件
- 保研推免個(gè)人簡(jiǎn)歷
- 《計(jì)算機(jī)組成原理》武漢大學(xué)2023級(jí)期末考試試題答案
- 廣東廣州白云區(qū)2021學(xué)年第二學(xué)期期末學(xué)生學(xué)業(yè)質(zhì)量診斷調(diào)研六年級(jí)語(yǔ)文(含答案)
- 公安院校公安專業(yè)招生體檢表
- 2023-2024學(xué)年四川省瀘州市小學(xué)數(shù)學(xué)四年級(jí)上冊(cè)期末評(píng)估測(cè)試題
- GB/T 9944-2015不銹鋼絲繩
- GB/T 5019.11-2009以云母為基的絕緣材料第11部分:塑型云母板
評(píng)論
0/150
提交評(píng)論