2022年四川省綿陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022年四川省綿陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022年四川省綿陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022年四川省綿陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022年四川省綿陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年四川省綿陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.下列反常積分收斂的是()。A.∫1+∞xdx

B.∫1+∞x2dx

C.

D.

4.下列()不是組織文化的特征。

A.超個(gè)體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性5.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx

B.cosxdX

C.-cos(x-2)dx

D.cos(x-2)dx

6.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。

A.eB.1C.1+e2

D.ln2

7.

8.

9.由曲線,直線y=x,x=2所圍面積為

A.

B.

C.

D.

10.

11.

12.當(dāng)x→0時(shí),sinx是sinx的等價(jià)無(wú)窮小量,則k=()A.0B.1C.2D.313.A.A.xy

B.yxy

C.(x+1)yln(x+1)

D.y(x+1)y-1

14.A.sin(2x-1)+C

B.

C.-sin(2x-1)+C

D.

15.

16.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

17.

18.A.A.-sinx

B.cosx

C.

D.

19.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C20.A.A.

B.

C.

D.

二、填空題(20題)21.

22.

23.方程y'-ex-y=0的通解為_____.

24.設(shè)函數(shù)f(x)=x-1/x,則f'(x)=________.

25.26.27.設(shè)y=3x,則y"=_________。

28.

29.

30.

31.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分32.微分方程exy'=1的通解為______.33.cosx為f(x)的一個(gè)原函數(shù),則f(x)=______.34.35.______。36.設(shè),則y'=______.37.38.設(shè)f(x)在x=1處連續(xù),=2,則=________。

39.

40.

三、計(jì)算題(20題)41.

42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

43.求曲線在點(diǎn)(1,3)處的切線方程.44.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

46.求微分方程y"-4y'+4y=e-2x的通解.

47.

48.

49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

50.51.求微分方程的通解.52.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).53.54.55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

56.

57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.59.證明:60.將f(x)=e-2X展開為x的冪級(jí)數(shù).四、解答題(10題)61.

62.

63.

64.

65.設(shè)z=z(x,y)由ez-z+xy=3所確定,求dz。

66.

67.

68.

69.

70.五、高等數(shù)學(xué)(0題)71.已知f(x)的一個(gè)原函數(shù)為(1+sinz)lnz,求∫xf(x)dx。

六、解答題(0題)72.

參考答案

1.C

2.D

3.DA,∫1+∞xdx==∞發(fā)散;

4.B解析:組織文化的特征:(1)超個(gè)體的獨(dú)特性;(2)相對(duì)穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。

5.D本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

可知應(yīng)選D.

6.C

7.A

8.D

9.B

10.B

11.C

12.B由等價(jià)無(wú)窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價(jià)無(wú)窮小量的另一種表述形式,由于當(dāng)x→0時(shí),有sinx~x,由題設(shè)知當(dāng)x→0時(shí),kx~sinx,從而kx~x,可知k=1。

13.C

14.B本題考查的知識(shí)點(diǎn)為不定積分換元積分法。

因此選B。

15.C

16.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

17.A解析:

18.C本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.

可知應(yīng)選C.

19.C

20.A

21.1/(1-x)2

22.3x2+4y3x2+4y解析:23.ey=ex+Cy'-ex-y=0,可改寫為eydy=exdx,兩邊積分得ey=ex+C.

24.1+1/x225.3x2

26.本題考查了一元函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)27.3e3x

28.

解析:

29.

30.31.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此

32.y=-e-x+C本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

由于方程為exy'=1,先變形為

變量分離dy=e-xdx.

兩端積分

為所求通解.33.-sinx本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

由于cosx為f(x)的原函數(shù),可知

f(x)=(cosx)'=-sinx.

34.35.本題考查的知識(shí)點(diǎn)為極限運(yùn)算。

所求極限的表達(dá)式為分式,其分母的極限不為零。

因此

36.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.

37.

本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.

二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.

38.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。

39.11解析:

40.3/2

41.

42.

43.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

44.由等價(jià)無(wú)窮小量的定義可知

45.

46.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

47.

48.由一階線性微分方程通解公式有

49.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

50.

51.

52.

列表:

說(shuō)明

53.

54.55.由二重積分物理意義知

56.

57.

58.函數(shù)的定義域?yàn)?/p>

注意

59.

60.

61.

62.解

63.

64.

65.

66.

67.

68.

69.

70.

71.∫f"(x)dx=∫xdf(x)=xf(x)一∫f(x)dx∵f(x)的原函數(shù)為(1+sinx)Inx;

∴f(x)dx=(1+sinx)Inx+c∴原式=xcoslnx+(1+sinx)一(1+sinx)lnx一c;=xcosxlnx+s

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論