版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年安徽省宿州市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)方程y''-2y'-3y=f(x)有特解y*,則它的通解為A.y=C1e-x+C2e3x+y*
B.y=C1e-x+C2e3x
C.y=C1xe-x+C2e3x+y*
D.y=C1ex+C2e-3x+y*
2.若x0為f(x)的極值點(diǎn),則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
3.
4.()。A.
B.
C.
D.
5.管理幅度是指一個主管能夠直接、有效地指揮下屬成員的數(shù)目,經(jīng)研究發(fā)現(xiàn),高層管理人員的管理幅度通常以()較為合適。
A.4~8人B.10~15人C.15~20人D.10~20人
6.設(shè)z=ysinx,則等于().A.A.-cosxB.-ycosxC.cosxD.ycosx
7.
8.A.e-1dx
B.-e-1dx
C.(1+e-1)dx
D.(1-e-1)dx
9.
10.
A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散
11.A.A.-3/2B.3/2C.-2/3D.2/3
12.曲線的水平漸近線的方程是()
A.y=2B.y=-2C.y=1D.y=-1
13.
14.
15.
16.
17.
18.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)19.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
20.
二、填空題(20題)21.冪級數(shù)的收斂半徑為______.22.23.24.25.冪級數(shù)的收斂區(qū)間為______.
26.
27.
28.29.設(shè),則y'=________。30.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則x2dxdy化為極坐標(biāo)系下的二重積分的表達(dá)式為________。
31.
32.33.
34.
35.過點(diǎn)M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線方程為_________。
36.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分37.38.若當(dāng)x→0時,2x2與為等價無窮小,則a=______.
39.
40.設(shè)f(x+1)=4x2+3x+1,g(x)=f(e-x),則g(x)=__________.
三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.42.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則43.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
45.
46.證明:47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
48.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
49.
50.
51.
52.求微分方程y"-4y'+4y=e-2x的通解.
53.54.55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).57.
58.求微分方程的通解.59.將f(x)=e-2X展開為x的冪級數(shù).60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)61.
62.63.求方程y''-2y'+5y=ex的通解.
64.
65.
66.
67.
68.求微分方程y"-y'-2y=3ex的通解.69.求曲線y=在點(diǎn)(1,1)處的切線方程.
70.
五、高等數(shù)學(xué)(0題)71.設(shè)
則當(dāng)n→∞時,x,是__________變量。
六、解答題(0題)72.求微分方程y"+4y=e2x的通解。
參考答案
1.A考慮對應(yīng)的齊次方程y''-2y'-3y==0的通解.特征方程為r2-2r-3=0,所以r1=-1,r2=3,所以y''-2y'-3y==0的通解為,所以原方程的通解為y=C1e-x+C2e3x+y*.
2.C本題考查的知識點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(a)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見的錯誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f'(x0)=0”認(rèn)為是極值的充分必要條件.
3.A
4.A
5.A解析:高層管理人員的管理幅度通常以4~8人較為合適。
6.C本題考查的知識點(diǎn)為高階偏導(dǎo)數(shù).
由于z=ysinx,因此
可知應(yīng)選C.
7.A
8.D本題考查了函數(shù)的微分的知識點(diǎn)。
9.C解析:
10.C解析:
11.A
12.D
13.C
14.C
15.C
16.D
17.B
18.A本題考查的知識點(diǎn)為無窮級數(shù)的收斂性。
19.B本題考查的知識點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
20.B解析:21.0本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.
所給冪級數(shù)為不缺項(xiàng)情形
因此收斂半徑為0.
22.
本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.
所給級數(shù)為缺項(xiàng)情形,
23.本題考查的知識點(diǎn)為重要極限公式。
24.本題考查的知識點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.
考生只需熟記導(dǎo)數(shù)運(yùn)算的法則
25.(-2,2);本題考查的知識點(diǎn)為冪級數(shù)的收斂區(qū)間.
由于所給級數(shù)為不缺項(xiàng)情形,
可知收斂半徑,收斂區(qū)間為(-2,2).
26.e-6
27.0
28.
本題考查的知識點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)計(jì)算.
29.30.因?yàn)镈:x2+y2≤a2(a>0),y≥0,所以令且0≤r≤a,0≤0≤π,則=∫0πdθ∫0acos2θ.rdr=∫0πdθ∫0ar3cos2θdr。
31.
32.1
33.
34.y=-e-x+C
35.36.本題考查的知識點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此
37.38.6;本題考查的知識點(diǎn)為無窮小階的比較.
當(dāng)于當(dāng)x→0時,2x2與為等價無窮小,因此
可知a=6.
39.
40.
41.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
42.由等價無窮小量的定義可知
43.
44.函數(shù)的定義域?yàn)?/p>
注意
45.
46.
47.由二重積分物理意義知
48.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%49.由一階線性微分方程通解公式有
50.
51.
52.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
53.
54.
55.
56.
列表:
說明
57.
則
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.68.相應(yīng)的齊次微分方程為y"-y'-2y=0.其特征方程為r2-r-2=0.其特征根為r1=-1,r2=2.齊次方程的通解為Y=C1e-x+C2e2x.由于f(x)=3ex,1不是其特征根,設(shè)非齊次方程的特解為y*=Aex.代入原方程可得
原方程的通解為
本題考查的知識點(diǎn)為求解二階線性常系數(shù)非齊次微分方程.
由二階
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年3月全國城市空氣質(zhì)量報告
- 網(wǎng)球視頻制作課程設(shè)計(jì)
- 2025年度車輛租賃與綠色出行推廣項(xiàng)目合同2篇
- 2025版電動自行車充電設(shè)備安裝與維護(hù)合同3篇
- 《大豆蛋白對發(fā)酵面團(tuán)品質(zhì)的影響研究》
- 《女中音(Mezzo Soprano)花腔技巧研究》
- 《大學(xué)生時代精神培育研究》
- 糕點(diǎn)生產(chǎn)培訓(xùn)課程設(shè)計(jì)
- 二零二五年度上市公司股份回購與信息披露協(xié)議3篇
- 二零二五年企業(yè)員工通勤大巴租賃服務(wù)協(xié)議2篇
- 高中數(shù)學(xué)放縮法
- 上海市閔行區(qū)2024-2025學(xué)年八年級(上)期末物理試卷(解析版)
- 人教版三年級上冊數(shù)學(xué)期末測試卷可打印
- 醫(yī)療高級職稱評審論文答辯
- 設(shè)計(jì)服務(wù)保障措施方案
- 軟件測試方案模板(完整版)
- 建筑幕墻工程(鋁板、玻璃、石材)監(jiān)理實(shí)施細(xì)則(全面版)
- 基于課程標(biāo)準(zhǔn)的學(xué)生創(chuàng)新素養(yǎng)培育的學(xué)科教學(xué)改進(jìn)研究課題申報評審書
- 批判性思維技能測試題及答案
- 人工智能教學(xué)實(shí)驗(yàn)室建設(shè)方案
- 醫(yī)療人員廉潔從業(yè)九項(xiàng)準(zhǔn)則
評論
0/150
提交評論