2022年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年河南省開封市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。

A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度

2.設(shè)y=f(x)在[0,1]上連續(xù),且f(0)>0,f(1)<0,則下列選項(xiàng)正確的是

A.f(x)在[0,1]上可能無界

B.f(x)在[0,1]上未必有最小值

C.f(x)在[0,1]上未必有最大值

D.方程f(x)=0在(0,1)內(nèi)至少有一個(gè)實(shí)根

3.()。A.3B.2C.1D.0

4.

5.A.

B.

C.

D.

6.

7.方程x2+y2-2z=0表示的二次曲面是.

A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面

8.

9.設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)可導(dǎo),f'(x)>0,f(a)f(b)<0,則f(x)在(a,b)內(nèi)零點(diǎn)的個(gè)數(shù)為

A.3B.2C.1D.0

10.A.

B.

C.

D.

11.

12.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.低階無窮小

13.

14.

15.A.A.-(1/2)B.1/2C.-1D.2

16.若f(x)有連續(xù)導(dǎo)數(shù),下列等式中一定成立的是

A.d∫f(x)dx=f(x)dx

B.d∫f(x)dx=f(x)

C.d∫f(x)dx=f(x)+C

D.∫df(x)=f(x)

17.()A.A.(-∞,-3)和(3,+∞)

B.(-3,3)

C.(-∞,O)和(0,+∞)

D.(-3,0)和(0,3)

18.

19.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸

20.微分方程y"+y'=0的通解為

A.y=Ce-x

B.y=e-x+C

C.y=C1e-x+C2

D.y=e-x

二、填空題(20題)21.22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.34.35.36.37.

38.

39.

40.

三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.43.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.44.45.

46.

47.求微分方程y"-4y'+4y=e-2x的通解.

48.求微分方程的通解.49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

50.

51.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.53.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則54.55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

56.

57.將f(x)=e-2X展開為x的冪級(jí)數(shù).58.求曲線在點(diǎn)(1,3)處的切線方程.59.證明:60.

四、解答題(10題)61.

確定a,b使得f(x)在x=0可導(dǎo)。

62.將函數(shù)f(x)=lnx展開成(x-1)的冪級(jí)數(shù),并指出收斂區(qū)間。

63.

64.

65.設(shè)z=z(x,y)由ez-xyz=1所確定,求全微分dz。

66.求y=xex的極值及曲線的凹凸區(qū)間與拐點(diǎn).67.

68.

69.70.五、高等數(shù)學(xué)(0題)71.

在t=1處的切線方程_______。

六、解答題(0題)72.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過切點(diǎn)A的切線方程.

參考答案

1.D

2.D

3.A

4.D解析:

5.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。

6.A

7.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。

8.B

9.C本題考查了零點(diǎn)存在定理的知識(shí)點(diǎn)。由零點(diǎn)存在定理可知,f(x)在(a,b)上必有零點(diǎn),且函數(shù)是單調(diào)函數(shù),故其在(a,b)上只有一個(gè)零點(diǎn)。

10.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒有這個(gè)結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為

11.A

12.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無窮小,因此選A。

13.C

14.D解析:

15.A

16.A解析:若設(shè)F'(x)=f(x),由不定積分定義知,∫f(x)dx=F(x)+C。從而

有:d∫f(x)dx=d∫F(x)+C]=F'(x)dx=f(x)dx,故A正確。D中應(yīng)為∫df(x)=f(x)+C。

17.D

18.B解析:

19.A∵f'(x)<0,f(x)單減;f''(x)<0,f(x)凸∴f(x)在(a,b)內(nèi)單減且凸。

20.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。

21.

本題考查的知識(shí)點(diǎn)為重要極限公式.

22.

23.e-6

24.[01)∪(1+∞)

25.1/61/6解析:

26.0

27.y=1y=1解析:

28.(12)

29.2

30.(-22)

31.本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).

32.

33.

本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.

34.

35.<0本題考查了反常積分的斂散性(比較判別法)的知識(shí)點(diǎn)。

36.

37.-1本題考查了利用導(dǎo)數(shù)定義求極限的知識(shí)點(diǎn)。

38.2/3

39.ln2

40.

本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.

41.

列表:

說明

42.

43.由二重積分物理意義知

44.

45.由一階線性微分方程通解公式有

46.

47.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

48.

49.

50.

51.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%52.函數(shù)的定義域?yàn)?/p>

注意

53.由等價(jià)無窮小量的定義可知

54.

55.

56.

57.58.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

59.

60.

61.

①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②

∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5

62.

63.

64.

65.66.y=xex

的定義域?yàn)?-∞,+∞),y'=(1+x)ex,y"=(2+x)ex.令y'=0,得駐點(diǎn)x1=-1.令y"=0,得x2=-2.

極小值點(diǎn)為x=-1,極小值為

曲線的凹區(qū)間為(-2,+∞);曲線的凸區(qū)間為(-∞,-2);拐點(diǎn)為本題考查的知識(shí)點(diǎn)為:描述函數(shù)幾何性態(tài)的綜合問題.

67.

68.

69.

70.

71.在t=1處切線的切點(diǎn)(14);斜率

∴切線方程y一4=4(x一1);即y=4x,在t=1處切線的切點(diǎn)(1,4);斜率

∴切線方程y一4=4(x一1);即y=4x72.由于y=x2,則y'=2x,曲線y=x2上過點(diǎn)A(a,a2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論