版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)2.函數(shù)的一個(gè)單調(diào)遞增區(qū)間是()A. B. C. D.3.將函數(shù)向左平移個(gè)單位,得到的圖象,則滿足()A.圖象關(guān)于點(diǎn)對(duì)稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關(guān)于點(diǎn)對(duì)稱C.圖象關(guān)于直線對(duì)稱,在上的最小值為1D.最小正周期為,在有兩個(gè)根4.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為()A.9 B.10 C.18 D.205.已知函數(shù),方程有四個(gè)不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個(gè)零點(diǎn)”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知集合,則=A. B. C. D.7.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.8.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.9.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點(diǎn),過(guò)點(diǎn)作圓的切線與雙曲線的左支交于點(diǎn)P,若,則雙曲線的離心率為()A. B. C. D.10.已知雙曲線的一個(gè)焦點(diǎn)為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.11.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.12.設(shè)實(shí)數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現(xiàn)有一善織布的女子,從第2天開(kāi)始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個(gè)月(按30天計(jì)算)共織布390尺.”則每天增加的數(shù)量為_(kāi)___尺,設(shè)該女子一個(gè)月中第n天所織布的尺數(shù)為,則______.14.設(shè)命題:,,則:__________.15.已知數(shù)列{an}的前n項(xiàng)和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項(xiàng)和為_(kāi)____16.在中,角所對(duì)的邊分別為,,的平分線交于點(diǎn)D,且,則的最小值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知等比數(shù)列中,,是和的等差中項(xiàng).(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和.18.(12分)已知函數(shù),.(Ⅰ)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù),并證明;(Ⅱ)函數(shù)在區(qū)間上的極值點(diǎn)從小到大分別為,,證明:19.(12分)設(shè)數(shù)列是公差不為零的等差數(shù)列,其前項(xiàng)和為,,若,,成等比數(shù)列.(1)求及;(2)設(shè),設(shè)數(shù)列的前項(xiàng)和,證明:.20.(12分)已知函數(shù)的定義域?yàn)?,且滿足,當(dāng)時(shí),有,且.(1)求不等式的解集;(2)對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.21.(12分)如圖,在直角中,,,,點(diǎn)在線段上.(1)若,求的長(zhǎng);(2)點(diǎn)是線段上一點(diǎn),,且,求的值.22.(10分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先化簡(jiǎn)N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因?yàn)镹={x|x(x+3)≤0}={x|-3≤x≤0},又因?yàn)镸={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡(jiǎn)表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時(shí),D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D【點(diǎn)睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).3、C【解析】
由輔助角公式化簡(jiǎn)三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項(xiàng).【詳解】函數(shù),則,將向左平移個(gè)單位,可得,由正弦函數(shù)的性質(zhì)可知,的對(duì)稱中心滿足,解得,所以A、B選項(xiàng)中的對(duì)稱中心錯(cuò)誤;對(duì)于C,的對(duì)稱軸滿足,解得,所以圖象關(guān)于直線對(duì)稱;當(dāng)時(shí),,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對(duì)于D,最小正周期為,當(dāng),,由正弦函數(shù)的圖象與性質(zhì)可知,時(shí)僅有一個(gè)解為,所以D錯(cuò)誤;綜上可知,正確的為C,故選:C.【點(diǎn)睛】本題考查了三角函數(shù)式的化簡(jiǎn),三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.4、B【解析】
由已知可得函數(shù)f(x)的周期與對(duì)稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對(duì)稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時(shí),f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個(gè)交點(diǎn),即函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)為10.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.5、A【解析】
作出函數(shù)的圖象,得到,把函數(shù)有零點(diǎn)轉(zhuǎn)化為與在(2,4]上有交點(diǎn),利用導(dǎo)數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個(gè)零點(diǎn),即有兩個(gè)不同的根,也就是與在上有2個(gè)交點(diǎn),則的最小值為;設(shè)過(guò)原點(diǎn)的直線與的切點(diǎn)為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個(gè)零點(diǎn)”是“”的充分不必要條件,故選A.【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)的判定,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,試題有一定的綜合性,屬于中檔題.6、C【解析】
本題考查集合的交集和一元二次不等式的解法,滲透了數(shù)學(xué)運(yùn)算素養(yǎng).采取數(shù)軸法,利用數(shù)形結(jié)合的思想解題.【詳解】由題意得,,則.故選C.【點(diǎn)睛】不能領(lǐng)會(huì)交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.7、A【解析】
根據(jù)實(shí)數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問(wèn)題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問(wèn)題的解法,屬于中檔題.8、C【解析】
直接利用復(fù)數(shù)的除法的運(yùn)算法則化簡(jiǎn)求解即可.【詳解】由得:本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的除法的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.9、C【解析】
設(shè)過(guò)點(diǎn)作圓的切線的切點(diǎn)為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點(diǎn),則有,得到,即可求解.【詳解】設(shè)過(guò)點(diǎn)作圓的切線的切點(diǎn)為,,所以是中點(diǎn),,,.故選:C.【點(diǎn)睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.10、B【解析】
根據(jù)焦點(diǎn)所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點(diǎn)坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點(diǎn)在軸上,∴可設(shè)雙曲線的方程為,一個(gè)焦點(diǎn)為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點(diǎn)睛】此題考查根據(jù)雙曲線的漸近線和焦點(diǎn)求解雙曲線的標(biāo)準(zhǔn)方程,易錯(cuò)點(diǎn)在于漏掉考慮焦點(diǎn)所在坐標(biāo)軸導(dǎo)致方程形式出錯(cuò).11、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.12、C【解析】
畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫(huà)出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時(shí),且x∈-13,1時(shí),故選:C.【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題,畫(huà)出圖像是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、52【解析】
設(shè)從第2天開(kāi)始,每天比前一天多織尺布,由等差數(shù)列前項(xiàng)和公式求出,由此利用等差數(shù)列通項(xiàng)公式能求出.【詳解】設(shè)從第2天開(kāi)始,每天比前一天多織d尺布,
則,
解得,即每天增加的數(shù)量為,
,故答案為,52.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式、等差數(shù)列的求和公式,意在考查利用所學(xué)知識(shí)解決問(wèn)題的能力,屬于中檔題.14、,【解析】
存在符號(hào)改任意符號(hào),結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點(diǎn)睛】本題考查全(特)稱命題.對(duì)全(特)稱命題進(jìn)行否定的方法:(1)改寫(xiě)量詞:全稱量詞改寫(xiě)為存在量詞,存在量詞改寫(xiě)為全稱量詞;(2)否定結(jié)論:對(duì)于一般命題的否定只需直接否定結(jié)論即可.15、【解析】
由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.可得:2().利用裂項(xiàng)求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數(shù)列{}前2020項(xiàng)和為2(1)=2(1).故答案為:.【點(diǎn)睛】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.16、9【解析】分析:先根據(jù)三角形面積公式得條件、再利用基本不等式求最值.詳解:由題意可知,,由角平分線性質(zhì)和三角形面積公式得,化簡(jiǎn)得,因此當(dāng)且僅當(dāng)時(shí)取等號(hào),則的最小值為.點(diǎn)睛:在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)用等比數(shù)列的首項(xiàng)和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項(xiàng)公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯(cuò)位相減法求出Tn.【詳解】(1)設(shè)數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和等差中項(xiàng)的概念以及錯(cuò)位相減法求和,考查運(yùn)算能力,屬中檔題.18、(Ⅰ)函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).見(jiàn)解析(Ⅱ)見(jiàn)解析【解析】
(Ⅰ)根據(jù)題意,,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性,分類討論在區(qū)間的單調(diào)區(qū)間和極值,進(jìn)而研究零點(diǎn)個(gè)數(shù)問(wèn)題;(Ⅱ)求導(dǎo),,由于在區(qū)間上的極值點(diǎn)從小到大分別為,,求出,利用導(dǎo)數(shù)結(jié)合單調(diào)性和極值點(diǎn),即可證明出.【詳解】解:(Ⅰ),,當(dāng)時(shí),,,在區(qū)間上單調(diào)遞減,,在區(qū)間上無(wú)零點(diǎn);當(dāng)時(shí),,在區(qū)間上單調(diào)遞增,,在區(qū)間上唯一零點(diǎn);當(dāng)時(shí),,,在區(qū)間上單調(diào)遞減,,;在區(qū)間上唯一零點(diǎn);綜上可知,函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).(Ⅱ),,由(Ⅰ)知在無(wú)極值點(diǎn);在有極小值點(diǎn),即為;在有極大值點(diǎn),即為,由,即,,2…,,,,,,以及的單調(diào)性,,,,,由函數(shù)在單調(diào)遞增,得,,由在單調(diào)遞減,得,即,故.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,通過(guò)導(dǎo)數(shù)解決函數(shù)零點(diǎn)個(gè)數(shù)問(wèn)題和證明不等式,考查轉(zhuǎn)化思想和計(jì)算能力.19、(1),;(2)證明見(jiàn)解析.【解析】
(1)根據(jù)題中條件求出等差數(shù)列的首項(xiàng)和公差,然后根據(jù)首項(xiàng)和公差即可求出數(shù)列的通項(xiàng)和前項(xiàng)和;(2)根據(jù)裂項(xiàng)求和求出,根據(jù)的表達(dá)式即可證明.【詳解】(1)設(shè)的公差為,由題意有,且,所以,;(2)因?yàn)椋裕?【點(diǎn)睛】本題主要考查了等差數(shù)列基本量的求解,裂項(xiàng)求和法,屬于基礎(chǔ)題.20、(1);(2).【解析】
(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運(yùn)用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設(shè),利用三角恒等變換化簡(jiǎn),結(jié)合
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報(bào)參考:金銀繡藝術(shù)特征及其傳承創(chuàng)新研究
- 二零二五版能源設(shè)施安全防護(hù)勞務(wù)分包協(xié)議3篇
- 二零二五版房地產(chǎn)開(kāi)發(fā)經(jīng)營(yíng)項(xiàng)目環(huán)境保護(hù)合同范本3篇
- 2025年常州貨運(yùn)資格證在哪里練題
- 二零二五版毛竹砍伐與林業(yè)碳交易市場(chǎng)接入合同4篇
- 2025年光伏發(fā)電項(xiàng)目投資合作合同模板4篇
- 二零二五年度出租車公司車輛融資租賃合同5篇
- 二零二五年度農(nóng)產(chǎn)品電商平臺(tái)合作協(xié)議6篇
- 2025年度智能倉(cāng)儲(chǔ)物流系統(tǒng)承包經(jīng)營(yíng)協(xié)議書(shū)4篇
- 二零二五年度企業(yè)信用擔(dān)保合同模板:降低融資風(fēng)險(xiǎn)2篇
- 課題申報(bào)書(shū):GenAI賦能新質(zhì)人才培養(yǎng)的生成式學(xué)習(xí)設(shè)計(jì)研究
- 駱駝祥子-(一)-劇本
- 全國(guó)醫(yī)院數(shù)量統(tǒng)計(jì)
- 《中國(guó)香文化》課件
- 2024年醫(yī)美行業(yè)社媒平臺(tái)人群趨勢(shì)洞察報(bào)告-醫(yī)美行業(yè)觀察星秀傳媒
- 第六次全國(guó)幽門螺桿菌感染處理共識(shí)報(bào)告-
- 天津市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 經(jīng)濟(jì)學(xué)的思維方式(第13版)
- 盤(pán)錦市重點(diǎn)中學(xué)2024年中考英語(yǔ)全真模擬試卷含答案
- 手衛(wèi)生依從性調(diào)查表
- 湖北教育出版社四年級(jí)下冊(cè)信息技術(shù)教案
評(píng)論
0/150
提交評(píng)論