2022年甘肅省慶陽市普通高校對口單招高等數(shù)學一自考預(yù)測試題(含答案)_第1頁
2022年甘肅省慶陽市普通高校對口單招高等數(shù)學一自考預(yù)測試題(含答案)_第2頁
2022年甘肅省慶陽市普通高校對口單招高等數(shù)學一自考預(yù)測試題(含答案)_第3頁
2022年甘肅省慶陽市普通高校對口單招高等數(shù)學一自考預(yù)測試題(含答案)_第4頁
2022年甘肅省慶陽市普通高校對口單招高等數(shù)學一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022年甘肅省慶陽市普通高校對口單招高等數(shù)學一自考預(yù)測試題(含答案)學校:________班級:________姓名:________考號:________

一、單選題(20題)1.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)

2.設(shè)是正項級數(shù),且un<υn(n=1,2,…),則下列命題正確的是()

A.B.C.D.

3.微分方程yy'=1的通解為A.A.y=x2+C

B.y2=x+C

C.1/2y2=Cx

D.1/2y2=x+C

4.A.A.

B.0

C.

D.1

5.

6.

7.

8.下列關(guān)于動載荷Kd的敘述不正確的一項是()。

A.公式中,△j為沖擊無以靜載荷方式作用在被沖擊物上時,沖擊點沿沖擊方向的線位移

B.沖擊物G突然加到被沖擊物上時,K1=2,這時候的沖擊力為突加載荷

C.當時,可近似取

D.動荷因數(shù)Ka因為由沖擊點的靜位移求得,因此不適用于整個沖擊系統(tǒng)

9.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.

B.

C.

D.

10.

11.A.sin(2x-1)+C

B.

C.-sin(2x-1)+C

D.

12.如圖所示,在乎板和受拉螺栓之間墊上一個墊圈,可以提高()。

A.螺栓的拉伸強度B.螺栓的剪切強度C.螺栓的擠壓強度D.平板的擠壓強度

13.

14.下列結(jié)論正確的有A.若xo是f(x)的極值點,則x0一定是f(x)的駐點

B.若xo是f(x)的極值點,且f’(x0)存在,則f’(x)=0

C.若xo是f(x)的駐點,則x0一定是f(xo)的極值點

D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)

15.則f(x)間斷點是x=()。A.2B.1C.0D.-116.設(shè)y1(x),y2(x)二階常系數(shù)線性微分方程y+py+qy=0的兩個線性無關(guān)的解,則它的通解為()A.A.y1(x)+c2y2(x)

B.c1y1(x)+y2(x)

C.y1(x)+y2(x)

D.c1y1(x)+c2y2(x)注.c1,C2為任意常數(shù).

17.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0

B.

C.

D.π

18.A.A.

B.B.

C.C.

D.D.

19.曲線y=x2+5x+4在點(-1,0)處切線的斜率為

A.2B.-2C.3D.-320.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4二、填空題(20題)21.

22.

23.

24.設(shè)函數(shù)z=x2ey,則全微分dz=______.

25.

26.

27.

28.

29.

30.設(shè)y=2x2+ax+3在點x=1取得極小值,則a=_____。31.微分方程y''+6y'+13y=0的通解為______.32.33.34.函數(shù)f(x)=x3-12x的極小值點x=_______.

35.

36.設(shè)曲線y=f(x)在點(1,f(1))處的切線平行于x軸,則該切線方程為______.37.38.設(shè),則f'(x)=______.

39.

40.

三、計算題(20題)41.

42.求微分方程的通解.43.證明:44.求曲線在點(1,3)處的切線方程.

45.

46.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.

47.求微分方程y"-4y'+4y=e-2x的通解.

48.當x一0時f(x)與sin2x是等價無窮小量,則49.將f(x)=e-2X展開為x的冪級數(shù).50.

51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.53.

54.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?

55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.57.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

58.59.

60.

四、解答題(10題)61.62.63.求

64.

65.求由方程確定的y=y(x)的導(dǎo)函數(shù)y'.

66.

67.

68.

69.

70.五、高等數(shù)學(0題)71.曲線y=lnx在點_________處的切線平行于直線y=2x一3。

六、解答題(0題)72.

參考答案

1.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。

2.B由正項級數(shù)的比較判別法可以得到,若小的級數(shù)發(fā)散,則大的級數(shù)必發(fā)散,故選B。

3.D

4.D本題考查的知識點為拉格朗日中值定理的條件與結(jié)論.

可知應(yīng)選D.

5.B

6.C

7.C

8.D

9.C

10.D

11.B本題考查的知識點為不定積分換元積分法。

因此選B。

12.D

13.A解析:

14.B

15.Df(x)為分式,當X=-l時,分母x+1=0,分式?jīng)]有意義,因此點x=-1為f(x)的間斷點,故選D。

16.D

17.C本題考查的知識點為羅爾定理的條件與結(jié)論。

18.C本題考查了二重積分的積分區(qū)域的表示的知識點.

19.C解析:

20.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.

21.

22.(02)(0,2)解析:

23.

24.dz=2xeydx+x2eydy

25.6x226.

27.

28.

解析:

29.2

30.

31.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).

32.

33.1本題考查了收斂半徑的知識點。

34.22本題考查了函數(shù)的極值的知識點。f'(x)=3x2-12=3(x-2)(x+2),當x=2或x=-2時,f'(x)=0,當x<-2時,f'(x)>0;當-2<x<2時,f'(x)<0;當x>2時,f’(x)>0,因此x=2是極小值點,

35.36.y=f(1)本題考查的知識點有兩個:一是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點為(x0,f(x0)),則曲線y=f(x)過該點的切線方程為

y-f(x0)=f'(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為

y=f(1)=0.

本題中考生最常見的錯誤為:將曲線y=f(x)在點(x0,f(x0))處的切線方程寫為

y-f(x0)=f'(x)(x-x0)

而導(dǎo)致錯誤.本例中錯誤地寫為

y-f(1)=f'(x)(x-1).

本例中由于f(x)為抽象函數(shù),一些考生不習慣于寫f(1),有些人誤寫切線方程為

y-1=0.

37.1本題考查了無窮積分的知識點。

38.本題考查的知識點為復(fù)合函數(shù)導(dǎo)數(shù)的運算.

39.0

40.(1/3)ln3x+C

41.

42.

43.

44.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

45.

46.

47.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

48.由等價無窮小量的定義可知

49.50.由一階線性微分方程通解公式有

51.

列表:

說明

52.函數(shù)的定義域為

注意

53.

54.需求規(guī)律為Q=100ep-2.25p

∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當P=10時,價格上漲1%需求量減少2.5%

55.

56.由二重積分物理意義知

57.

58.

59.

60.

61.

62.

63.本題考查的知識點為極限的四則運算法則.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論