2023年四川省眉山市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2023年四川省眉山市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2023年四川省眉山市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2023年四川省眉山市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2023年四川省眉山市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年四川省眉山市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.過點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().

A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

2.

3.

4.

5.設(shè)平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0則平面π1與π2的位置關(guān)系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合

6.

7.

8.設(shè)函數(shù)f(x)=2lnx+ex,則f'(2)等于

A.eB.1C.1+e2

D.ln29.A.exln2

B.e2xln2

C.ex+ln2

D.e2x+ln2

10.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

11.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.

B.

C.

D.不能確定

12.

13.A.dx+dy

B.

C.

D.2(dx+dy)

14.設(shè)y=sin2x,則y等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x

15.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為

A.2B.-2C.3D.-3

16.

17.

A.-e

B.-e-1

C.e-1

D.e

18.A.A.2

B.

C.1

D.-2

19.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶

20.

二、填空題(20題)21.

22.

23.

24.設(shè)y=2x2+ax+3在點(diǎn)x=1取得極小值,則a=_____。

25.

26.

27.設(shè)f(x+1)=4x2+3x+1,g(x)=f(e-x),則g(x)=__________.

28.

=_________.

29.

30.

31.設(shè)函數(shù)z=x2ey,則全微分dz=______.

32.設(shè)y=3x,則y"=_________。33.

34.

35.

36.

37.設(shè),則y'=______。38.39.

40.微分方程y'+4y=0的通解為_________。

三、計(jì)算題(20題)41.42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.43.證明:44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

45.

46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

47.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

48.

49.50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.52.

53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.54.求微分方程的通解.

55.

56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.將f(x)=e-2X展開為x的冪級(jí)數(shù).

58.求微分方程y"-4y'+4y=e-2x的通解.

59.求曲線在點(diǎn)(1,3)處的切線方程.60.四、解答題(10題)61.

62.

63.

64.

65.(本題滿分10分)求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)-周所成旋轉(zhuǎn)體的體積.

66.求微分方程的通解.67.

68.

69.70.計(jì)算五、高等數(shù)學(xué)(0題)71.

_________當(dāng)a=__________時(shí)f(x)在(一∞,+∞)內(nèi)連續(xù)。

六、解答題(0題)72.

參考答案

1.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組

故選A.

2.C

3.D

4.B解析:

5.A平面π1的法線向量n1=(2,1,4),平面π2的法線向量n2=(2,-8,1),n1*n1=0。可知兩平面垂直,因此選A。

6.B

7.D

8.C本題考查了函數(shù)在一點(diǎn)的導(dǎo)數(shù)的知識(shí)點(diǎn).

因f(x)=2lnx+ex,于是f'(x)=2/x+ex,故f'(2)=1+e2.

9.B本題考查了一階線性齊次方程的知識(shí)點(diǎn)。

因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=In2,故f(x)=e2xln2.

注:方程y'=2y求解時(shí)也可用變量分離.

10.B

11.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義.

由定積分的幾何意義可知應(yīng)選B.

常見的錯(cuò)誤是選C.如果畫個(gè)草圖,則可以避免這類錯(cuò)誤.

12.A

13.C

14.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.

15.C解析:

16.B

17.C所給問題為反常積分問題,由定義可知

因此選C.

18.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

19.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。

20.A解析:

21.

22.22解析:

23.dx

24.

25.y=2x+1

26.

27.

28.。

29.

30.(1+x)2

31.dz=2xeydx+x2eydy32.3e3x

33.本題考查了函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。

34.π/4

35.x/1=y/2=z/-136.

37.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。38.本題考查的知識(shí)點(diǎn)為無(wú)窮小的性質(zhì)。

39.

40.y=Ce-4x

41.

42.函數(shù)的定義域?yàn)?/p>

注意

43.

44.

45.

46.

列表:

說(shuō)明

47.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%48.由一階線性微分方程通解公式有

49.

50.由等價(jià)無(wú)窮小量的定義可知

51.

52.

53.由二重積分物理意義知

54.

55.

56.

57.

58.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

59.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

60.

61.

62.解

63.64.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.

積分區(qū)域D如圖2—1所示.

解法1利用極坐標(biāo)系.

D可以表示為

解法2利用直角坐標(biāo)系.

如果利用直角坐標(biāo)計(jì)算,區(qū)域D的邊界曲線關(guān)于x,y地位等同,因此選擇哪種積分次序應(yīng)考慮被積函數(shù)的特點(diǎn).注意

可以看出,兩種積分次序下的二次積分都可以進(jìn)行計(jì)算,但是若先對(duì)x積分,后對(duì)y積分,將簡(jiǎn)便些.

本題中考生出現(xiàn)的較普遍的錯(cuò)誤為,利用極坐標(biāo)將二重積分化為二次積分:

右端被積函數(shù)中丟掉了r,這是考生應(yīng)該注意的問題.通常若區(qū)域可以表示為

65.本題考查的知識(shí)點(diǎn)有兩個(gè):利用定積分求平面圖形的面積;用定積分求繞坐標(biāo)軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積.

所給曲線圍成的平面圖形如圖1-2所示.

解法1利用定積分求平面圖形的面積。

解法2利用二重積分求平面圖形面積.

求旋轉(zhuǎn)體體積與解法1同.

注本題也可以利用二重積分求平面圖形的面積.66.所給方程為一階線性微分方程

其通解為

本題考杏的知識(shí)點(diǎn)為求解一階線性微分方程.

67.

68.69.本題考查的知識(shí)點(diǎn)為兩個(gè):定積分表示-個(gè)確定的數(shù)值;計(jì)算定積分.

這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表達(dá)式,為此將上式兩端在[0,1]上取定積分,可得

得出A的方程,可解出A,從而求得f(x).

本題是考生感到困難的題目,普遍感到無(wú)從下手,這是因?yàn)椴粫?huì)利用“定積分表示-個(gè)數(shù)值”的性質(zhì).

這種解題思路可以推廣到極限、二重積分等問題中.

70

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論