版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年四川省眉山市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.過點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
2.
3.
4.
5.設(shè)平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0則平面π1與π2的位置關(guān)系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合
6.
7.
8.設(shè)函數(shù)f(x)=2lnx+ex,則f'(2)等于
A.eB.1C.1+e2
D.ln29.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
10.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
11.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
12.
13.A.dx+dy
B.
C.
D.2(dx+dy)
14.設(shè)y=sin2x,則y等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
15.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為
A.2B.-2C.3D.-3
16.
17.
A.-e
B.-e-1
C.e-1
D.e
18.A.A.2
B.
C.1
D.-2
19.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶
20.
二、填空題(20題)21.
22.
23.
24.設(shè)y=2x2+ax+3在點(diǎn)x=1取得極小值,則a=_____。
25.
26.
27.設(shè)f(x+1)=4x2+3x+1,g(x)=f(e-x),則g(x)=__________.
28.
=_________.
29.
30.
31.設(shè)函數(shù)z=x2ey,則全微分dz=______.
32.設(shè)y=3x,則y"=_________。33.
34.
35.
36.
37.設(shè),則y'=______。38.39.
40.微分方程y'+4y=0的通解為_________。
三、計(jì)算題(20題)41.42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.43.證明:44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
45.
46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
47.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
48.
49.50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.52.
53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.54.求微分方程的通解.
55.
56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
57.將f(x)=e-2X展開為x的冪級(jí)數(shù).
58.求微分方程y"-4y'+4y=e-2x的通解.
59.求曲線在點(diǎn)(1,3)處的切線方程.60.四、解答題(10題)61.
62.
63.
64.
65.(本題滿分10分)求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)-周所成旋轉(zhuǎn)體的體積.
66.求微分方程的通解.67.
68.
69.70.計(jì)算五、高等數(shù)學(xué)(0題)71.
_________當(dāng)a=__________時(shí)f(x)在(一∞,+∞)內(nèi)連續(xù)。
六、解答題(0題)72.
參考答案
1.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
2.C
3.D
4.B解析:
5.A平面π1的法線向量n1=(2,1,4),平面π2的法線向量n2=(2,-8,1),n1*n1=0。可知兩平面垂直,因此選A。
6.B
7.D
8.C本題考查了函數(shù)在一點(diǎn)的導(dǎo)數(shù)的知識(shí)點(diǎn).
因f(x)=2lnx+ex,于是f'(x)=2/x+ex,故f'(2)=1+e2.
9.B本題考查了一階線性齊次方程的知識(shí)點(diǎn)。
因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=In2,故f(x)=e2xln2.
注:方程y'=2y求解時(shí)也可用變量分離.
10.B
11.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見的錯(cuò)誤是選C.如果畫個(gè)草圖,則可以避免這類錯(cuò)誤.
12.A
13.C
14.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
15.C解析:
16.B
17.C所給問題為反常積分問題,由定義可知
因此選C.
18.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
19.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。
20.A解析:
21.
22.22解析:
23.dx
24.
25.y=2x+1
26.
27.
28.。
29.
30.(1+x)2
31.dz=2xeydx+x2eydy32.3e3x
33.本題考查了函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
34.π/4
35.x/1=y/2=z/-136.
37.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。38.本題考查的知識(shí)點(diǎn)為無(wú)窮小的性質(zhì)。
39.
40.y=Ce-4x
41.
42.函數(shù)的定義域?yàn)?/p>
注意
43.
44.
45.
46.
列表:
說(shuō)明
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%48.由一階線性微分方程通解公式有
49.
50.由等價(jià)無(wú)窮小量的定義可知
51.
52.
則
53.由二重積分物理意義知
54.
55.
56.
57.
58.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
59.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
60.
61.
62.解
63.64.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分;選擇積分次序或利用極坐標(biāo)計(jì)算.
積分區(qū)域D如圖2—1所示.
解法1利用極坐標(biāo)系.
D可以表示為
解法2利用直角坐標(biāo)系.
如果利用直角坐標(biāo)計(jì)算,區(qū)域D的邊界曲線關(guān)于x,y地位等同,因此選擇哪種積分次序應(yīng)考慮被積函數(shù)的特點(diǎn).注意
可以看出,兩種積分次序下的二次積分都可以進(jìn)行計(jì)算,但是若先對(duì)x積分,后對(duì)y積分,將簡(jiǎn)便些.
本題中考生出現(xiàn)的較普遍的錯(cuò)誤為,利用極坐標(biāo)將二重積分化為二次積分:
右端被積函數(shù)中丟掉了r,這是考生應(yīng)該注意的問題.通常若區(qū)域可以表示為
65.本題考查的知識(shí)點(diǎn)有兩個(gè):利用定積分求平面圖形的面積;用定積分求繞坐標(biāo)軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積.
所給曲線圍成的平面圖形如圖1-2所示.
解法1利用定積分求平面圖形的面積。
解法2利用二重積分求平面圖形面積.
求旋轉(zhuǎn)體體積與解法1同.
注本題也可以利用二重積分求平面圖形的面積.66.所給方程為一階線性微分方程
其通解為
本題考杏的知識(shí)點(diǎn)為求解一階線性微分方程.
67.
68.69.本題考查的知識(shí)點(diǎn)為兩個(gè):定積分表示-個(gè)確定的數(shù)值;計(jì)算定積分.
這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表達(dá)式,為此將上式兩端在[0,1]上取定積分,可得
得出A的方程,可解出A,從而求得f(x).
本題是考生感到困難的題目,普遍感到無(wú)從下手,這是因?yàn)椴粫?huì)利用“定積分表示-個(gè)數(shù)值”的性質(zhì).
這種解題思路可以推廣到極限、二重積分等問題中.
70
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四塔吊設(shè)備購(gòu)置與銷售專項(xiàng)合同范本3篇
- 二零二四年家電銷售顧問聘用與售后服務(wù)合同3篇
- 二零二五版出租車承包合同綠色出行推廣合作2篇
- 二零二五版豪華度假酒店承包經(jīng)營(yíng)合同規(guī)范范本3篇
- 二零二五版公益勞動(dòng)服務(wù)基地共建與社區(qū)公共服務(wù)拓展合同3篇
- 年度營(yíng)養(yǎng)型輸液競(jìng)爭(zhēng)策略分析報(bào)告
- 年度智能兒童成長(zhǎng)儀市場(chǎng)分析及競(jìng)爭(zhēng)策略分析報(bào)告
- 2024年鋼材交易:居間代理全套合同
- 二零二五版水利工程承包居間代理服務(wù)合同2篇
- 2025年變壓器智能化升級(jí)采購(gòu)及技術(shù)支持合同3篇
- 安徽省合肥市包河區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末化學(xué)試題
- 《酸堿罐區(qū)設(shè)計(jì)規(guī)范》編制說(shuō)明
- PMC主管年終總結(jié)報(bào)告
- 售樓部保安管理培訓(xùn)
- 倉(cāng)儲(chǔ)培訓(xùn)課件模板
- 2025屆高考地理一輪復(fù)習(xí)第七講水循環(huán)與洋流自主練含解析
- GB/T 44914-2024和田玉分級(jí)
- 2024年度企業(yè)入駐跨境電商孵化基地合作協(xié)議3篇
- 《形勢(shì)與政策》課程標(biāo)準(zhǔn)
- 2023年海南省公務(wù)員錄用考試《行測(cè)》真題卷及答案解析
- 橋梁監(jiān)測(cè)監(jiān)控實(shí)施方案
評(píng)論
0/150
提交評(píng)論