下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知底面為正方形的四棱錐,其一條側棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.2.已知復數(shù)滿足,則的共軛復數(shù)是()A. B. C. D.3.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.4.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要5.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數(shù)m的最小值是()A. B.3 C. D.6.若的展開式中的常數(shù)項為-12,則實數(shù)的值為()A.-2 B.-3 C.2 D.37.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.8.已知函數(shù)(其中,,)的圖象關于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:①直線是函數(shù)圖象的一條對稱軸;②點是函數(shù)的一個對稱中心;③函數(shù)與的圖象的所有交點的橫坐標之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③9.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.10.設全集,集合,則=()A. B. C. D.11.某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數(shù)與眾數(shù)均為30 D.這一年的總利潤超過400萬元12.已知定義在上函數(shù)的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.674二、填空題:本題共4小題,每小題5分,共20分。13.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳習近平新時代中國特色社會主義思想為主要內(nèi)容,立足全體黨員、面向全社會的優(yōu)質平臺,現(xiàn)已日益成為老百姓了解國家動態(tài),緊跟時代脈搏的熱門app.該款軟件主要設有“閱讀文章”和“視聽學習”兩個學習板塊和“每日答題”、“每周答題”、“專項答題”、“挑戰(zhàn)答題”四個答題板塊.某人在學習過程中,將六大板塊依次各完成一次,則“閱讀文章”與“視聽學習”兩大學習板塊之間最多間隔一個答題板塊的學習方法有________種.14.設,滿足約束條件,若目標函數(shù)的最大值為,則的最小值為______.15.已知實數(shù)滿足(為虛數(shù)單位),則的值為_______.16.已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)中,內(nèi)角的對邊分別為,.(1)求的大小;(2)若,且為的重心,且,求的面積.18.(12分)如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求證:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.19.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應的變換將點(3,1)變?yōu)辄c(1,1).求實數(shù)a,k的值.20.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若直線與曲線交于、兩點,求的面積.21.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.22.(10分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點.(1)求證:.(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖2.B【解析】
根據(jù)復數(shù)的除法運算法則和共軛復數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點睛】本題考查了復數(shù)的除法的運算法則,考查了復數(shù)的共軛復數(shù)的定義,屬于基礎題.3.B【解析】
甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.【點睛】本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎.4.B【解析】
根據(jù)充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關鍵是要弄清楚誰是條件,誰是結論.5.D【解析】
設點,由,得關于的方程.由題意,該方程有解,則,求出正實數(shù)m的取值范圍,即求正實數(shù)m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內(nèi)兩點間距離公式,屬于中檔題.6.C【解析】
先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數(shù)項為:,解得,故選:C.【點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎題.7.D【解析】
根據(jù)題意畫出幾何關系,由四邊形的內(nèi)切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關系如下圖所示:設四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.8.C【解析】分析:根據(jù)最低點,判斷A=3,根據(jù)對稱中心與最低點的橫坐標求得周期T,再代入最低點可求得解析式為,依次判斷各選項的正確與否.詳解:因為為對稱中心,且最低點為,所以A=3,且由所以,將帶入得,所以由此可得①錯誤,②正確,③當時,,所以與有6個交點,設各個交點坐標依次為,則,所以③正確所以選C點睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過求得的解析式進一步研究函數(shù)的性質,屬于中檔題.9.A【解析】
令,進而求得,再轉化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數(shù)在研究函數(shù)最值中的應用,考查了轉化的數(shù)學思想,恰當?shù)挠靡粋€未知數(shù)來表示和是本題的關鍵,屬于中檔題.10.A【解析】
先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.11.D【解析】
直接根據(jù)折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數(shù)為30,中位數(shù)為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學生的理解能力和應用能力.12.B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉化到已知解析式的函數(shù)定義域內(nèi)求解.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先分間隔一個與不間隔分類計數(shù),再根據(jù)捆綁法求排列數(shù),最后求和得結果.【詳解】若“閱讀文章”與“視聽學習”兩大學習板塊相鄰,則學習方法有種;若“閱讀文章”與“視聽學習”兩大學習板塊之間間隔一個答題板塊的學習方法有種;因此共有種.故答案為:【點睛】本題考查排列組合實際問題,考查基本分析求解能力,屬基礎題.14.【解析】
先根據(jù)條件畫出可行域,設,再利用幾何意義求最值,將最大值轉化為軸上的截距,只需求出直線,過可行域內(nèi)的點時取得最大值,從而得到一個關于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當直線過直線與直線的交點時,目標函數(shù)取得最大,即,即,而.故答案為.【點睛】本題主要考查了基本不等式在最值問題中的應用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.15.【解析】
由虛數(shù)單位的性質結合復數(shù)相等的條件列式求得,的值,則答案可求.【詳解】解:由,,,所以,得,..故答案為:.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查虛數(shù)單位的性質,屬于基礎題.16.【解析】
由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因為軸截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點睛】考查圓柱的軸截面和其體積的求法,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)利用正弦定理,轉化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.18.(1)見解析(2)【解析】分析:(1)根據(jù)面面垂直的判定定理即可證明平面ADE⊥平面BDEF;(2)建立空間直角坐標系,利用空間向量法即可求CF與平面ABCD所成角的正弦值;也可以應用常規(guī)法,作出線面角,放在三角形當中來求解.詳解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,解得BD=,所以AB2+BD2=AB2,根據(jù)勾股定理得∠ADB=90°∴AD⊥BD.又因為DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因為BDDE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如圖,由已知可得,,則,則三角形BCD為銳角為30°的等腰三角形.則.過點C做,交DB、AB于點G,H,則點G為點F在面ABCD上的投影.連接FG,則,DE⊥平面ABCD,則平面.過G做于點I,則BF平面,即角為二面角CBFD的平面角,則60°.則,,則.在直角梯形BDEF中,G為BD中點,,,,設,則,,則.,則,即CF與平面ABCD所成角的正弦值為.(Ⅱ)方法二:可知DA、DB、DE兩兩垂直,以D為原點,建立如圖所示的空間直角坐標系D-xyz.設DE=h,則D(0,0,0),B(0,,0),C(-,-,h).,.設平面BCF的法向量為m=(x,y,z),則所以取x=,所以m=(,-1,-),取平面BDEF的法向量為n=(1,0,0),由,解得,則,又,則,設CF與平面ABCD所成角為,則sin=.故直線CF與平面ABCD所成角的正弦值為點睛:該題考查的是立體幾何的有關問題,涉及到的知識點有面面垂直的判定,線面角的正弦值,在求解的過程中,需要把握面面垂直的判定定理的內(nèi)容,要明白垂直關系直角的轉化,在求線面角的有關量的時候,有兩種方法,可以應用常規(guī)法,也可以應用向量法.19.解:設特征向量為α=對應的特征值為λ,則=λ,即因為k≠0,所以a=2.5分因為,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點:特征向量,逆矩陣點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,考查逆矩陣.20.(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以,結合可將曲線的極坐標方程化為直角坐標方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標方程是;(2)因為曲線的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點睛】本題考查參數(shù)方程、極坐標方程與普通方程之間的轉化,同時也考查了直線與圓中三角形面積的計算,考查計算能力,屬于中等題.21.(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解析】
(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設存在點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023試用期合同協(xié)議書七篇
- 2025交通事故自行調解書協(xié)議書12篇
- 個人股權轉讓協(xié)議書七篇
- 個人土地轉租協(xié)議范本
- 關注細節(jié)的“管理新星”-記工程局勞動模范經(jīng)管部部長孫獻龍
- 跖疣病因介紹
- 四大名著之紅樓春趣經(jīng)典解讀2
- 2023-2024學年天津市河北區(qū)高二(上)期末語文試卷
- 2023年天津市靜海一中高考語文模擬試卷(一)
- 重慶2020-2024年中考英語5年真題回-教師版-專題02 完形填空
- 蘇科版初中八年級上冊數(shù)學:62 一次函數(shù)課件
- 軟件項目監(jiān)理通用表
- 20格乘20行紅格作文紙
- 廣告制作投標書范本
- 建筑物照明系統(tǒng)照度測試記錄
- 高二班會 完整版課件PPT
- 奶茶店加盟合同協(xié)議書范本通用版
- 信達資產(chǎn)管理公司最全資料介紹筆試面經(jīng)
- 金蝶K3 WISE平臺介紹
- 部編人教版八年級上冊初中歷史 第20課 正面戰(zhàn)場的抗戰(zhàn) 同步練習(作業(yè)設計)
- 抗菌藥物的分類及抗菌特點理解
評論
0/150
提交評論