版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年山東省菏澤市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx
2.
3.過點(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
4.
5.A.A.小于0B.大于0C.等于0D.不確定6.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
7.A.A.2B.1C.0D.-1
8.在穩(wěn)定性計算中,若用歐拉公式算得壓桿的臨界壓力為Fcr,而實際上壓桿屬于中柔度壓桿,則()。
A.并不影響壓桿的臨界壓力值
B.實際的臨界壓力大于Fcr,是偏于安全的
C.實際的臨界壓力小于Fcr,是偏于不安全的
D.實際的臨界壓力大于Fcr,是偏于不安全的
9.
10.
11.
12.A.A.發(fā)散B.絕對收斂C.條件收斂D.收斂性與k有關(guān)
13.A.x2+C
B.x2-x+C
C.2x2+x+C
D.2x2+C
14.
15.A.A.1
B.
C.m
D.m2
16.
A.(-2,2)
B.(-∞,0)
C.(0,+∞)
D.(-∞,+∞)
17.
18.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是
A.xo為f(x)的極大值點
B.xo為f(x)的極小值點
C.xo不為f(x)的極值點
D.xo可能不為f(x)的極值點
19.
20.
二、填空題(20題)21.
22.
23.
24.25.微分方程y"+y'=0的通解為______.26.
27.
28.
29.30.
31.設(shè)函數(shù)f(x)=x-1/x,則f'(x)=________.
32.
33.設(shè)f(x,y)=x+(y-1)arcsinx,則f'x(x,1)=__________。
34.設(shè)f(x)=esinx,則=________。
35.
36.
37.38.
39.
40.
三、計算題(20題)41.將f(x)=e-2X展開為x的冪級數(shù).42.43.
44.
45.
46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.47.求微分方程的通解.48.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.50.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
52.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
53.
54.求微分方程y"-4y'+4y=e-2x的通解.
55.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.56.57.證明:58.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
59.求曲線在點(1,3)處的切線方程.
60.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.
69.計算,其中D是由y=x,y=2,x=2與x=4圍成.
70.五、高等數(shù)學(xué)(0題)71.某工廠每月生產(chǎn)某種商品的個數(shù)x與需要的總費用函數(shù)關(guān)系為10+2x+
(單位:萬元)。若將這些商品以每個9萬元售出,問每月生產(chǎn)多少個產(chǎn)品時利潤最大?最大利潤是多少?
六、解答題(0題)72.計算,其中D是由x2+y2=1,y=x及x軸所圍成的第一象域的封閉圖形.
參考答案
1.A
2.C解析:
3.A設(shè)所求平面方程為.由于點(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
4.C
5.C
6.A本題考查的知識點為不定積分運算.
可知應(yīng)選A.
7.C
8.B
9.A
10.A解析:
11.C
12.C
13.B本題考查的知識點為不定積分運算.
因此選B.
14.B
15.D本題考查的知識點為重要極限公式或等價無窮小量代換.
解法1
解法2
16.A
17.C
18.A
19.C
20.D
21.
22.
23.3
24.25.y=C1+C2e-x,其中C1,C2為任意常數(shù)本題考查的知識點為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的一般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.
微分方程為y"+y'=0.
特征方程為r3+r=0.
特征根r1=0.r2=-1.
因此所給微分方程的通解為
y=C1+C2e-x,
其牛C1,C2為任意常數(shù).
26.
27.yf''(xy)+f'(x+y)+yf''(x+y)
28.
解析:29.f(0).
本題考查的知識點為導(dǎo)數(shù)的定義.
由于f(0)=0,f(0)存在,因此
本題如果改為計算題,其得分率也會下降,因為有些考生常常出現(xiàn)利用洛必達法則求極限而導(dǎo)致運算錯誤:
因為題設(shè)中只給出f(0)存在,并沒有給出f(x)(x≠0)存在,也沒有給出f(x)連續(xù)的條件,因此上述運算的兩步都錯誤.
30.
本題考查的知識點為冪級數(shù)的收斂半徑.
注意此處冪級數(shù)為缺項情形.
31.1+1/x2
32.
33.134.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。
35.
36.37.
本題考查的知識點為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.
38.e.
本題考查的知識點為極限的運算.
39.y''=x(asinx+bcosx)
40.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:
41.
42.
43.
則
44.45.由一階線性微分方程通解公式有
46.
列表:
說明
47.
48.
49.函數(shù)的定義域為
注意
50.由等價無窮小量的定義可知51.由二重積分物理意義知
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
53.
54.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
55.
56.
57.
58.
59.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.積分區(qū)域D如下圖所示.被積函數(shù)f(x,y)=,化為二次積分時對哪個變量皆易于積分;但是區(qū)域D易于用X-型不等式表示,因此選擇先對y積分,后對x積分的二次積分次序.
70.
71.R
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《供應(yīng)商檔案管理》課件
- 《園林景觀分析》課件
- 人教版八年級生物下冊第八單元健康地生活第三章第二、三章章末總結(jié)教學(xué)課件
- 《密爾沃基美術(shù)館》課件
- 單位管理制度匯編大全員工管理篇
- 單位管理制度合并匯編【職工管理篇】
- 單位管理制度分享合集職員管理十篇
- 單位管理制度范文大合集【人力資源管理篇】十篇
- 單位管理制度范例匯編職工管理篇
- 單位管理制度呈現(xiàn)匯編【人事管理篇】
- 非物質(zhì)文化遺產(chǎn)主題班會之英歌舞課件
- 柯橋區(qū)五年級上學(xué)期語文期末學(xué)業(yè)評價測試試卷
- 中國礦業(yè)大學(xué)《自然辯證法》2022-2023學(xué)年期末試卷
- TCWAN 0105-2024 攪拌摩擦焊接機器人系統(tǒng)技術(shù)條件
- 江蘇省期無錫市天一實驗學(xué)校2023-2024學(xué)年英語七年級第二學(xué)期期末達標(biāo)檢測試題含答案
- 耕地占補平衡系統(tǒng)課件
- 2022年山東師范大學(xué)自考英語(二)練習(xí)題(附答案解析)
- 醫(yī)院工作流程圖較全
- NB/T 11431-2023土地整治煤矸石回填技術(shù)規(guī)范
- 醫(yī)療器械集中采購文件(2024版)
- 上海市2024-2025學(xué)年高一語文下學(xué)期分科檢測試題含解析
評論
0/150
提交評論