版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年山西省晉中市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.微分方程y''-2y'=x的特解應(yīng)設(shè)為
A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c
3.
4.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
5.單位長度扭轉(zhuǎn)角θ與下列哪項(xiàng)無關(guān)()。
A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)6.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
7.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
8.
9.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-310.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無窮小B.低階無窮小C.同階但不等價(jià)無窮小D.等價(jià)無窮小11.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)
12.
13.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時(shí),比較無窮小量f(x)與g(x),有
A.f(x)對于g(x)是高階的無窮小量
B.f(x)對于g(x)是低階的無窮小量
C.f(x)與g(x)為同階無窮小量,但非等價(jià)無窮小量
D.f(x)與g(x)為等價(jià)無窮小量
14.
A.
B.
C.
D.
15.設(shè)f(x)=sin2x,則f(0)=()
A.-2B.-1C.0D.2
16.為了提高混凝土的抗拉強(qiáng)度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。
A.
B.
C.
D.
17.
18.
19.
20.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.
B.
C.
D.
二、填空題(20題)21.
22.
23.設(shè)f'(1)=2.則
24.設(shè).y=e-3x,則y'________。
25.________.26.
27.
28.
29.
30.
31.32.不定積分=______.
33.
34.35.36.設(shè)y=sin2x,則y'______.37.38.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。39.y''-2y'-3y=0的通解是______.
40.
三、計(jì)算題(20題)41.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.43.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).45.證明:46.
47.
48.
49.求微分方程y"-4y'+4y=e-2x的通解.
50.51.求曲線在點(diǎn)(1,3)處的切線方程.52.求微分方程的通解.
53.
54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
55.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
56.將f(x)=e-2X展開為x的冪級數(shù).
57.
58.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)61.計(jì)算二重積分
,其中D是由直線
及y=1圍
成的平面區(qū)域.
62.
63.
64.
65.
又可導(dǎo).
66.
67.
68.
69.
70.五、高等數(shù)學(xué)(0題)71.由曲線y=ex,y=e及y軸圍成的圖形的面積。
六、解答題(0題)72.
參考答案
1.D
2.C本題考查了二階常系數(shù)微分方程的特解的知識點(diǎn)。
因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
3.C
4.D本題考查的知識點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
5.A
6.B
7.C
8.A解析:
9.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.
10.B
11.A
12.C
13.C
14.B本題考查的知識點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
15.D由f(c)=sin2x可得f"(x)=cos2x(2x)"=2cos2x,f"(0)=2cos0=2,故選D。
16.D
17.D
18.A
19.C
20.D本題考查的知識點(diǎn)為定積分的性質(zhì);牛-萊公式.
可知應(yīng)選D.
21.
22.
23.11解析:本題考查的知識點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f'(1)=2,可知
24.-3e-3x
25.
26.
27.y28.0
本題考查的知識點(diǎn)為無窮小量的性質(zhì).
29.2
30.31.1
32.
;本題考查的知識點(diǎn)為不定積分的換元積分法.
33.2/52/5解析:
34.>135.2本題考查的知識點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
f'(x)=(x2)'=2x,
f"(x)=(2x)'=2.36.2sinxcosx本題考查的知識點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)運(yùn)算.
37.f(x)本題考查了導(dǎo)數(shù)的原函數(shù)的知識點(diǎn)。38.本題考查的知識點(diǎn)為原函數(shù)的概念。
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。39.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程為r2-2r-3=0,得特征根為r1=3,r2=-1,所以方程的通解為y=C1e-x+C2e3x.
40.
解析:
41.
42.
43.由等價(jià)無窮小量的定義可知
44.
列表:
說明
45.
46.
則
47.由一階線性微分方程通解公式有
48.
49.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
50.
51.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
52.
53.54.由二重積分物理意義知
55.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
56.
57.
58.
59.函數(shù)的定義域?yàn)?/p>
注意
60.
61.所給積分區(qū)域D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025苗木購銷合同樣本
- 2025年度公司簽約帶貨主播短視頻內(nèi)容制作合同3篇
- 二零二五年度勞動(dòng)合同集合與員工績效評估合同3篇
- 二零二五年度公益性崗位勞動(dòng)合同(老年人日間照料)3篇
- 2025年度農(nóng)村個(gè)人房屋買賣合同附農(nóng)村集體資產(chǎn)收益權(quán)轉(zhuǎn)讓合同3篇
- 二零二五年度農(nóng)村房屋互換與環(huán)保節(jié)能協(xié)議2篇
- 2025年度農(nóng)業(yè)勞務(wù)用工合同模板(含農(nóng)業(yè)廢棄物資源化利用技術(shù))3篇
- 新能源汽車研發(fā)價(jià)格保密協(xié)議書(2025年度)3篇
- 二零二五年度新能源出租車運(yùn)營合作協(xié)議3篇
- 2025年度智能家電產(chǎn)品供貨協(xié)議書3篇
- (新疆一模)2025屆高三高考適應(yīng)性檢測分學(xué)科第一次模擬考試 生物試卷(含答案解析)
- 【大學(xué)課件】文物數(shù)字化技術(shù)及數(shù)字化文物系統(tǒng)初探
- 高一數(shù)學(xué)上學(xué)期期末模擬試卷03-【中職專用】2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期(高教版2023基礎(chǔ)模塊)(解析版)
- 2024衛(wèi)星遙感應(yīng)用服務(wù)平臺建設(shè)與運(yùn)營合同
- 2024年社區(qū)工作者考試必考1000題【歷年真題】
- 醫(yī)院特殊管理藥品突發(fā)事件應(yīng)急預(yù)案例文(五篇)
- 全國計(jì)算機(jī)等級考試一級試題及答案(5套)
- DB4108T 8-2023 豎型廢棄礦井封井回填技術(shù)規(guī)程
- 醫(yī)生四頁簡歷10模版
- 2024年人教版八年級歷史上冊期中考試卷(附答案)
- 2024年鍋爐運(yùn)行值班員(中級)技能鑒定理論考試題庫(含答案)
評論
0/150
提交評論