2023年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁
2023年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁
2023年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁
2023年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁
2023年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________一、單選題(20題)1.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。

A.充要條件B.充分條件C.必要條件D.無關(guān)條件2.A.A.

B.

C.

D.

3.

4.()A.A.1B.2C.1/2D.-1

5.

6.人們對(duì)某一目標(biāo)的重視程度與評(píng)價(jià)高低,即人們?cè)谥饔^上認(rèn)為這種報(bào)酬的價(jià)值大小叫做()

A.需要B.期望值C.動(dòng)機(jī)D.效價(jià)

7.

8.

9.微分方程y'+x=0的通解()。A.

B.

C.

D.

10.

11.方程x2+2y2-z2=0表示的曲面是()A.A.橢球面B.錐面C.柱面D.平面

12.設(shè)x=1為y=x3-ax的極小值點(diǎn),則a等于().

A.3

B.

C.1

D.1/3

13.

14.

15.

16.

A.2x+1B.2xy+1C.x2+1D.2xy

17.

18.

19.

20.當(dāng)x→0時(shí),與x等價(jià)的無窮小量是

A.A.

B.ln(1+x)

C.C.

D.x2(x+1)

二、填空題(20題)21.

22.

23.過原點(diǎn)且與直線垂直的平面方程為______.

24.

25.

26.

27.

28.曲線y=1-x-x3的拐點(diǎn)是__________。

29.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.

30.

31.

32.

33.

34.

35.

36.函數(shù)f(x)=xe-x的極大值點(diǎn)x=__________。

37.

38.

39.

40.

三、計(jì)算題(20題)41.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

42.

43.

44.證明:

45.將f(x)=e-2X展開為x的冪級(jí)數(shù).

46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

47.求曲線在點(diǎn)(1,3)處的切線方程.

48.

49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

50.求微分方程的通解.

51.求微分方程y"-4y'+4y=e-2x的通解.

52.

53.

54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

55.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

56.

57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

58.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

60.

四、解答題(10題)61.(本題滿分10分)

62.

63.

64.

65.

66.

67.求微分方程xy'-y=x2的通解.

68.

69.證明:

70.

五、高等數(shù)學(xué)(0題)71.x=f(x,y)由x2+y2+z2=1確定,求zx,zy。

六、解答題(0題)72.

參考答案

1.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件

2.Dy=cos3x,則y'=-sin3x*(3x)'=-3sin3x。因此選D。

3.C

4.C由于f'(2)=1,則

5.C

6.D解析:效價(jià)是指?jìng)€(gè)人對(duì)達(dá)到某種預(yù)期成果的偏愛程度,或某種預(yù)期成果可能給行為者帶來的滿足程度。

7.A解析:

8.D解析:

9.D所給方程為可分離變量方程.

10.B

11.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程可知,所給曲面為錐面,因此選B.

12.A解析:本題考查的知識(shí)點(diǎn)為判定極值的必要條件.

由于y=x3-ax,y'=3x2-a,令y'=0,可得

由于x=1為y的極小值點(diǎn),因此y'|x=1=0,從而知

故應(yīng)選A.

13.B

14.A

15.D

16.B

17.A

18.D

19.A

20.B本題考查了等價(jià)無窮小量的知識(shí)點(diǎn)

21.

22.

本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系.

由于為初等函數(shù),定義域?yàn)?-∞,0),(0,+∞),點(diǎn)x=2為其定義區(qū)間(0,+∞)內(nèi)的點(diǎn),從而知

23.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.

由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0

24.33解析:

25.

26.4

27.3yx3y-1

28.(01)

29.[-1,1

30.(-24)(-2,4)解析:

31.0

32.3e3x3e3x

解析:

33.e2

34.

35.本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,一3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y一3z=0.

36.1

37.

38.3/23/2解析:

39.

40.[*]

41.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

42.

43.

44.

45.

46.

列表:

說明

47.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

48.由一階線性微分方程通解公式有

49.由二重積分物理意義知

50.

51.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

52.

53.

54.

55.由等價(jià)無窮小量的定義可知

56.

57.

58.

59.函數(shù)的定義域?yàn)?/p>

注意

60.

61.本題考查的知識(shí)點(diǎn)為求解二階線性常系數(shù)非齊次微分方程.

相應(yīng)的齊次微分方程為

代入原方程可得

原方程的通解為

【解題指導(dǎo)】

由二階線性常系數(shù)非齊次微分方程解的結(jié)構(gòu)定理可知,其通解y=相應(yīng)齊次方程的通解Y+非齊次方程的-個(gè)特解y*.

其中Y可以通過求解特征方程得特征根而求出.而y*可以利用待定系數(shù)法求解.

62.

63.

64.

65.解D在極坐標(biāo)系下可以表示為

66.

67.將方程化為標(biāo)準(zhǔn)形式本題考查的知識(shí)點(diǎn)為求解一階線性微分方程.

求解一階線性微分方程常可以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論