版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年黑龍江省大興安嶺地區(qū)成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.A.a=-9,b=14B.a=1,b=-6C.a=-2,b=0D.a=12,b=-5
2.
3.
4.
5.
6.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面7.A.
B.
C.
D.
8.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
9.
10.A.3x2+C
B.
C.x3+C
D.
11.
12.曲線y=x2+5x+4在點(-1,0)處切線的斜率為
A.2B.-2C.3D.-313.A.1B.0C.2D.1/2
14.
15.
16.
17.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
18.
A.
B.
C.
D.
19.
20.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點B.x=0是f(x)的極大值點C.x=0是f(x)的極小值點D.x=0是f(x)的拐點
21.
22.
23.
24.
25.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直26.微分方程y''-2y=ex的特解形式應(yīng)設(shè)為()。A.y*=Aex
B.y*=Axex
C.y*=2ex
D.y*=ex
27.
28.
29.A.A.xy
B.yxy
C.(x+1)yln(x+1)
D.y(x+1)y-1
30.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
31.
32.
33.A.2xy+3+2yB.xy+3+2yC.2xy+3D.xy+3
34.lim(x2+1)=
x→0
A.3
B.2
C.1
D.0
35.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,436.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
37.A.eB.e-1
C.e2
D.e-238.二次積分等于()A.A.
B.
C.
D.
39.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)=f(1),則在(0,1)內(nèi)曲線y=f(x)的所有切線中().A.A.至少有一條平行于x軸B.至少有一條平行于y軸C.沒有一條平行于x軸D.可能有一條平行于y軸40.()。A.2πB.πC.π/2D.π/441.A.0B.1C.2D.4
42.
43.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時,有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
44.
45.在特定工作領(lǐng)域內(nèi)運用技術(shù)、工具、方法等的能力稱為()
A.人際技能B.技術(shù)技能C.概念技能D.以上都不正確
46.A.0或1B.0或-1C.0或2D.1或-147.設(shè)z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
48.A.-1
B.0
C.
D.1
49.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件50.A.A.
B.
C.
D.
二、填空題(20題)51.
52.53.54.
55.
56.
57.過點(1,-1,0)且與直線平行的直線方程為______。
58.
59.冪級數(shù)的收斂半徑為______.
60.
61.62.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。63.
64.
65.66.設(shè)y=2x+sin2,則y'=______.
67.
68.
69.
70.三、計算題(20題)71.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.72.將f(x)=e-2X展開為x的冪級數(shù).73.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.74.求曲線在點(1,3)處的切線方程.75.求微分方程的通解.76.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
77.
78.證明:79.
80.81.82.
83.求微分方程y"-4y'+4y=e-2x的通解.
84.85.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則86.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.87.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
88.
89.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
90.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)91.
92.
93.94.95.
96.
97.
98.判定y=x-sinx在[0,2π]上的單調(diào)性。
99.100.(本題滿分10分)求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.五、高等數(shù)學(xué)(0題)101.
=()。
A.∞
B.0
C.
D.
六、解答題(0題)102.將f(x)=1/3-x展開為(x+2)的冪級數(shù),并指出其收斂區(qū)間。
參考答案
1.B
2.A解析:
3.D
4.A
5.C
6.C本題考查的知識點為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
7.D本題考查的知識點為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
8.A本題考查的知識點為利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.
9.B解析:
10.B
11.C
12.C解析:
13.C
14.B
15.D
16.C解析:
17.B本題考查的知識點為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運用.
注意到A左端為定積分,定積分存在時,其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.
由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.
18.B本題考查的知識點為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
19.A
20.A∵分母極限為0,分子極限也為0;(否則極限不存在)用羅必達法則同理即f"(0)一1≠0;x=0不是駐點∵可導(dǎo)函數(shù)的極值點必是駐點∴選A。
21.C
22.B
23.A
24.C
25.C本題考查的知識點為兩平面的位置關(guān)系.
由于平面π1,π2的法向量分別為
可知n1⊥n2,從而π1⊥π2.應(yīng)選C.
26.A由方程知,其特征方程為,r2-2=0,有兩個特征根r=±.又自由項f(x)=ex,λ=1不是特征根,故特解y*可設(shè)為Aex.
27.B
28.C
29.C
30.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
31.D解析:
32.A
33.C本題考查了一階偏導(dǎo)數(shù)的知識點。
34.C
35.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
36.C
37.C
38.A本題考查的知識點為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
39.A本題考查的知識點有兩個:羅爾中值定理;導(dǎo)數(shù)的幾何意義.
由題設(shè)條件可知f(x)在[0,1]上滿足羅爾中值定理,因此至少存在一點ξ∈(0,1),使f'(ξ)=0.這表明曲線y=f(x)在點(ξ,f(ξ))處的切線必定平行于x軸,可知A正確,C不正確.
如果曲線y=f(x)在點(ξ,f(ξ))處的切線平行于y軸,其中ξ∈(0,1),這條切線的斜率為∞,這表明f'(ξ)=∞為無窮大,此時說明f(x)在點x=ξ不可導(dǎo).因此可知B,D都不正確.
本題對照幾何圖形易于找出解答,只需依題設(shè)條件,畫出一條曲線,則可以知道應(yīng)該選A.
有些考生選B,D,這是由于不明確導(dǎo)數(shù)的幾何意義而導(dǎo)致的錯誤.
40.B
41.A本題考查了二重積分的知識點。
42.B
43.B
44.C
45.B解析:技術(shù)技能是指管理者掌握和熟悉特定專業(yè)領(lǐng)域中的過程、慣例、技術(shù)和工具的能力。
46.A
47.A本題考查的知識點為偏導(dǎo)數(shù)的計算。對于z=x2y,求的時候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。
48.C
49.B
50.A
51.1/3
52.
53.本題考查的知識點為不定積分的換元積分法。
54.
本題考查的知識點為求直線的方程.
由于所求直線平行于已知直線1,可知兩條直線的方向向量相同,由直線的標(biāo)準(zhǔn)式方程可知所求直線方程為
55.
56.y=1/2y=1/2解析:57.本題考查的知識點為直線的方程和直線與直線的關(guān)系。由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點向式方程可知所求直線方程為
58.F'(x)
59.
;
60.
61.62.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx63.1
64.65.本題考查的知識點為冪級數(shù)的收斂半徑.所給級數(shù)為缺項情形,由于66.2xln2本題考查的知識點為初等函數(shù)的求導(dǎo)運算.
本題需利用導(dǎo)數(shù)的四則運算法則求解.
Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.
本題中常見的錯誤有
(sin2)'=cos2.
這是由于誤將sin2認(rèn)作sinx,事實上sin2為一個常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
(sin2)'=0.
相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.
請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
67.
68.1
69.y70.±1.
本題考查的知識點為判定函數(shù)的間斷點.
71.由二重積分物理意義知
72.
73.
74.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
75.
76.
77.
78.
79.
則
80.
81.
82.由一階線性微分方程通解公式有
83.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
84.
85.由等價無窮小量的定義可知86.函數(shù)的定義域為
注意
87.
列表:
說明
88.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- PLC控制技術(shù)考試模擬題(含答案)
- 養(yǎng)老院環(huán)境保護管理制度
- 交通安全教育課件
- 《打造學(xué)習(xí)型團隊》課件
- 2024年新能源項目投資委托居間合同范本3篇
- 教育合同范本
- 2024年度特殊工種委托招聘與職業(yè)安全防護用品供應(yīng)合同3篇
- 臨床靜脈留置針護理及并發(fā)癥
- 2024年度綠色有機食材供應(yīng)合作協(xié)議2篇
- 2024天津出租車租賃車輛安全性能檢測合同3篇
- 2024年儲能白皮書
- 美團代運營合同模板
- DZ∕T 0173-2022 大地電磁測深法技術(shù)規(guī)程(正式版)
- 氣管插管術(shù)評分標(biāo)準(zhǔn)
- 《土木工程測量(第2版)》習(xí)題解答
- 2024年時事政治熱點題庫單選題200道及答案【易錯題】
- EPLAN 電氣設(shè)計基礎(chǔ)與應(yīng)用 第2版 課件全套 第1-10章 EPLAN P8概述- 報表生成
- 全國養(yǎng)老護理職業(yè)技能大賽養(yǎng)老護理員賽項考試題庫-上(單選題)
- 博士期間科研規(guī)劃
- 倉管員年度述職報告總結(jié)
- 初中英語七選五經(jīng)典5篇(附帶答案)
評論
0/150
提交評論