2023屆江蘇省海安市八校九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁
2023屆江蘇省海安市八校九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁
2023屆江蘇省海安市八校九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁
2023屆江蘇省海安市八校九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁
2023屆江蘇省海安市八校九年級數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,數(shù)軸上,,,四點中,能表示點的是()A. B. C. D.2.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個數(shù)據(jù)3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差3.如圖,菱形ABCD中,∠B=70°,AB=3,以AD為直徑的⊙O交CD于點E,則弧DE的長為()A.π B.π C.π D.π4.關(guān)于的一元一次方程的解為,則的值為()A.5 B.4 C.3 D.25.已知(a≠0,b≠0),下列變形錯誤的是()A. B.2a=3b C. D.3a=2b6.如圖,矩形ABCD中,連接AC,延長BC至點E,使,連接DE,若,則∠E的度數(shù)是()A.65° B.60° C.50° D.40°7.二次函數(shù)的圖象如圖,若一元二次方程有實數(shù)解,則k的最小值為A. B. C. D.08.如圖,圓O是Rt△ABC的外接圓,∠ACB=90°,∠A=25°,過點C作圓O的切線,交AB的延長線于點D,則∠D的度數(shù)是()A.25° B.40° C.50° D.65°9.如圖,的半徑為3,是的弦,直徑,,則的長為()A. B. C. D.10.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側(cè)C.當時,的值隨值的增大而減小 D.的最小值為-3二、填空題(每小題3分,共24分)11.在平面直角坐標系中,直線y=x-2與x軸、y軸分別交于點B、C,半徑為1的⊙P的圓心P從點A(4,m)出發(fā)以每秒個單位長度的速度沿射線AC的方向運動,設(shè)點P運動的時間為t秒,則當t=_____秒時,⊙P與坐標軸相切.12.如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.因為上游水庫泄洪,水面寬度變?yōu)?m,則水面上漲的高度為_____m.13.把拋物線的頂點E先向左平移3個單位,再向上平移4個單位后剛好落在同一平面直角坐標系的雙曲線上,那么=__________14.已知正六邊形的邊長為4cm,分別以它的三個不相鄰的頂點為圓心,邊長為半徑畫?。ㄈ鐖D),則所得到的三條弧的長度之和為cm.(結(jié)果保留π)15.已知關(guān)于x的一元二次方程(m+1)x2+4x+m2+m=0的一個根為0,則m的值是_________.16.如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.17.如圖,在平面直角坐標系xOy中,點A在函數(shù)y=(x>0)的圖象上,AC⊥x軸于點C,連接OA,則△OAC面積為_____.18.如圖,已知△AOB是直角三角形,∠AOB=90°,∠B=30°,點A在反比例函數(shù)y=的圖象上,若點B在反比例函數(shù)y=的圖象上,則的k值為_______.三、解答題(共66分)19.(10分)如圖,直線與軸交于點(),與軸交于點,拋物線()經(jīng)過,兩點,為線段上一點,過點作軸交拋物線于點.(1)當時,①求拋物線的關(guān)系式;②設(shè)點的橫坐標為,用含的代數(shù)式表示的長,并求當為何值時,?(2)若長的最大值為16,試討論關(guān)于的一元二次方程的解的個數(shù)與的取值范圍的關(guān)系.20.(6分)如圖①,BC是⊙O的直徑,點A在⊙O上,AD⊥BC垂足為D,弧AE=弧AB,BE分別交AD、AC于點F、G.(1)判斷△FAG的形狀,并說明理由;(2)如圖②若點E與點A在直徑BC的兩側(cè),BE、AC的延長線交于點G,AD的延長線交BE于點F,其余條件不變(1)中的結(jié)論還成立嗎?請說明理由.(3)在(2)的條件下,若BG=26,DF=5,求⊙O的直徑BC.21.(6分)解方程:(1)x2﹣2x﹣1=0(2)2(x﹣3)=3x(x﹣3)22.(8分)在如圖所示的網(wǎng)格圖中,已知和點(1)在網(wǎng)格圖中點M為位似中心,畫出,使其與的位似比為1:1.(1)寫出的各頂點的坐標.23.(8分)有這樣一個問題,如圖1,在等邊中,,為的中點,,分別是邊,上的動點,且,若,試求的長.愛鉆研的小峰同學(xué)發(fā)現(xiàn),可以通過幾何與函數(shù)相結(jié)合的方法來解決這個問題,下面是他的探究思路,請幫他補充完整.(1)注意到為等邊三角形,且,可得,于是可證,進而可得,注意到為中點,,因此和滿足的等量關(guān)系為______.(2)設(shè),,則的取值范圍是______.結(jié)合(1)中的關(guān)系求與的函數(shù)關(guān)系.(3)在平面直角坐標系中,根據(jù)已有的經(jīng)驗畫出與的函數(shù)圖象,請在圖2中完成畫圖.(4)回到原問題,要使,即為,利用(3)中的圖象,通過測量,可以得到原問題的近似解為______(精確到0.1)24.(8分)如圖,在O中,,CD⊥OA于點D,CE⊥OB于點E.(1)求證:;(2)若∠AOB=120°,OA=2,求四邊形DOEC的面積.25.(10分)如圖,△OAB中,OA=OB=10cm,∠AOB=80°,以點O為圓心,半徑為6cm的優(yōu)弧分別交OA、OB于點M、N.(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉(zhuǎn)80°得OP′.求證:AP=BP′;(2)點T在左半弧上,若AT與圓弧相切,求AT的長.(3)Q為優(yōu)弧上一點,當△AOQ面積最大時,請直接寫出∠BOQ的度數(shù)為.26.(10分)開學(xué)初,某文具店銷售一款書包,每個成本是50元,銷售期間發(fā)現(xiàn):銷售單價時100元時,每天的銷售量是50個,而銷售單價每降低2元,每天就可多售出10個,當銷售單價為多少元時,每天的銷售利潤達到4000元?要求銷售單價不低于成本,且商家盡量讓利給顧客.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】首先判斷出的近似值是多少,然后根據(jù)數(shù)軸的特征,當數(shù)軸方向朝右時,右邊的數(shù)總比左邊的數(shù)大,判斷出能表示點是哪個即可.【詳解】解:∵≈1.732,在1.5與2之間,∴數(shù)軸上,,,四點中,能表示的點是點P.故選:C【點睛】本題考查了在數(shù)軸上找表示無理數(shù)的點的方法,先求近似數(shù)再描點.2、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.3、A【分析】連接OE,由菱形的性質(zhì)得出∠D=∠B=70°,AD=AB=3,得出OA=OD=1.5,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠DOE=40°,再由弧長公式即可得出答案.【詳解】連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=70°,AD=AB=3,∴OA=OD=1.5,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴的長=.故選:A.【點睛】此題考查菱形的性質(zhì)、弧長計算,根據(jù)菱形得到需要的邊長及角度即可代入公式計算弧長.4、D【分析】滿足題意的有兩點,一是此方程為一元一次方程,即未知數(shù)x的次數(shù)為1;二是方程的解為x=1,即1使等式成立,根據(jù)兩點列式求解.【詳解】解:根據(jù)題意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故選:D.【點睛】本題考查一元一次方程的定義及方程解的定義,對定義的理解是解答此題的關(guān)鍵.5、B【分析】根據(jù)兩內(nèi)項之積等于兩外項之積對各選項分析判斷即可得解.【詳解】解:由得,3a=2b,A、由等式性質(zhì)可得:3a=2b,正確;B、由等式性質(zhì)可得2a=3b,錯誤;C、由等式性質(zhì)可得:3a=2b,正確;D、由等式性質(zhì)可得:3a=2b,正確;故選B.【點睛】本題考查了比例的性質(zhì),主要利用了兩內(nèi)項之積等于兩外項之積.6、A【分析】連接BD,與AC相交于點O,則BD=AC=BE,得△BDE是等腰三角形,由OB=OC,得∠OBC=50°,即可求出∠E的度數(shù).【詳解】解:如圖,連接BD,與AC相交于點O,∴BD=AC=BE,OB=OC,∴△BDE是等腰三角形,∠OBC=∠OCB,∵,∠ABC=90°,∴∠OBC=,∴;故選擇:A.【點睛】本題考查了矩形的性質(zhì),等腰三角形的判定和性質(zhì),三角形內(nèi)角和定理,以及直角三角形兩個銳角互余,解題的關(guān)鍵是正確作出輔助線,構(gòu)造等腰三角形進行解題.7、A【解析】∵一元二次方程ax2+bx+k=0有實數(shù)解,∴可以理解為y=ax2+bx和y=?k有交點,由圖可得,?k≤4,∴k≥?4,∴k的最小值為?4.故選A.8、B【分析】首先連接OC,由∠A=25°,可求得∠BOC的度數(shù),由CD是圓O的切線,可得OC⊥CD,繼而求得答案.【詳解】連接OC,∵圓O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圓O的切線,∴OC⊥CD,∴∠D=90°-∠BOC=40°.故選B.9、C【分析】連接OC,利用垂徑定理以及圓心角與圓周角的關(guān)系求出;再利用弧長公式即可求出的長.【詳解】解:連接OC(同弧所對的圓心角是圓周角的2倍)∵直徑∴=(垂徑定理)∴故選C【點睛】本題考查了垂徑定理、圓心角與圓周角以及利用弧長公式求弧長,熟練掌握相關(guān)定理和公式是解答本題的關(guān)鍵.10、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.二、填空題(每小題3分,共24分)11、1,3,5【分析】設(shè)⊙P與坐標軸的切點為D,根據(jù)一次函數(shù)圖象上點的坐標特征可得出點A、B、C的坐標,即可求出AB、AC的長,可得△OBC是等腰直角三角形,分⊙P只與x軸相切、與x軸、y軸同時相切、只與y軸相切三種情況,根據(jù)切線的性質(zhì)和等腰直角三角形的性質(zhì)分別求出AP的長,即可得答案.【詳解】設(shè)⊙P與坐標軸的切點為D,∵直線y=x-2與x軸、y軸分別交于點B、C,點A坐標為(4,m),∴x=0時,y=-2,y=0時,x=2,x=4時,y=2,∴A(4,2),B(2,0),C(0,-2),∴AB=2,AC=4,OB=OC=2,∴△OBC是等腰直角三角形,∠OBC=45°,①如圖,當⊙P只與x軸相切時,∵點D為切點,⊙P的半徑為1,∴PD⊥x軸,PD=1,∴△BDP是等腰直角三角形,∴BD=PD=1,∴BP=,∴AP=AB-BP=,∵點P的速度為個單位長度,∴t=1,②如圖,⊙P與x軸、y軸同時相切時,同①得PB=,∴AP=AB+PB=3,∵點P的速度為個單位長度,∴t=3.③如圖,⊙P只與y軸相切時,同①得PB=,∴AP=AC+PB=5,∵點P的速度為個單位長度,∴t=5.綜上所述:t的值為1、3、5時,⊙P與坐標軸相切,故答案為:1,3,5【點睛】本題考查切線的性質(zhì)及一次函數(shù)圖象上點的坐標特征,一次函數(shù)圖象上的點的坐標都適合該一次函數(shù)的解析式;圓的切線垂直于過切點的直徑;熟練掌握切線的性質(zhì)是解題關(guān)鍵.12、.【分析】先建立適當?shù)钠矫嬷苯亲鴺讼?,然后根?jù)題意確定函數(shù)解析式,最后求解即可.【詳解】解:如圖:以水面為x軸、橋洞的頂點所在直線為y軸建立平面直角坐標系,根據(jù)題意,得A(5,0),C(0,5),設(shè)拋物線解析式為:y=ax2+5,把A(5,0)代入,得a=﹣,所以拋物線解析式為:y=﹣x2+5,當x=3時,y=,所以當水面寬度變?yōu)?m,則水面上漲的高度為m.故答案為.【點睛】本題考查了二次函數(shù)的應(yīng)用,建立適當?shù)钠矫嬷苯亲鴺讼凳墙鉀Q本題的關(guān)鍵.13、﹣1【分析】根據(jù)題意得出頂點E坐標,利用平移的規(guī)律得出移動后的點的坐標,進而代入反比例函數(shù)即可求出k的值.【詳解】解:由題意可知拋物線的頂點E坐標為(1,-2),把點E(1,-2)先向左平移3個單位,再向上平移1個單位所得對應(yīng)點的坐標為(-2,2),∵點(-2,2)在雙曲線上,∴k=-2×2=-1.故答案為:-1.【點睛】本題考查二次函數(shù)圖象與幾何變換和二次函數(shù)的性質(zhì)以及待定系數(shù)法求反比例函數(shù)的解析式,根據(jù)題意求得平移后的頂點坐標是解題的關(guān)鍵.14、8π【解析】試題分析:先求得正多邊形的每一個內(nèi)角,然后由弧長計算公式.解:方法一:先求出正六邊形的每一個內(nèi)角==120°,所得到的三條弧的長度之和=3×=8π(cm);方法二:先求出正六邊形的每一個外角為60°,得正六邊形的每一個內(nèi)角120°,每條弧的度數(shù)為120°,三條弧可拼成一整圓,其三條弧的長度之和為8πcm.故答案為8π.考點:弧長的計算;正多邊形和圓.15、1【解析】先把x=1代入方程得到m2+m=1,然后解關(guān)于m的方程,再利用一元二次方程的定義確定滿足條件的m的值.【詳解】把x=1代入方程(m+1)x2+4x+m2+m=1得m2+m=1,解得m1=1,m2=-1,而m+1≠1,所以m=1.故答案為1.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.16、1【分析】根據(jù)題意得出△AOD∽△OCE,進而得出,即可得出k=EC×EO=1.【詳解】解:連接CO,過點A作AD⊥x軸于點D,過點C作CE⊥x軸于點E,∵連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵點A是雙曲線y=-在第二象限分支上的一個動點,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案為1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點以及相似三角形的判定與性質(zhì),正確添加輔助線,得出△AOD∽△OCE是解題關(guān)鍵.17、1【分析】根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義可得S△OAC=×2=1,再相加即可.【詳解】解:∵函數(shù)y=(x>0)的圖象經(jīng)過點A,AC⊥x軸于點C,∴S△OAC=×2=1,故答案為1.【點睛】本題考查了反比例函數(shù)比例系數(shù)k的幾何意義,掌握過反比例函數(shù)圖象上的點向x軸或y軸作垂線,這一點和垂足、原點組成的三角形的面積的計算方法是解本題的關(guān)鍵.18、-3【分析】根據(jù)已知條件證得OB=OA,設(shè)點A(a,),過點A作AC⊥x軸,過點B作BD⊥x軸,證明△AOC∽△OBD得到,=,得到點B的坐標,由此求出答案.【詳解】∵△AOB是直角三角形,∠AOB=90°,∠B=30°,∴OB=OA,設(shè)點A(a,),過點A作AC⊥x軸,過點B作BD⊥x軸,∴∠ACO=∠BDO=90°,∴∠BOD+∠OBD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠AOC=∠OBD,∴△AOC∽△OBD,∴,∴,=,∴B(-,),∴k=-=-3,故答案為:-3.【點睛】此題考查相似三角形的判定及性質(zhì),反比例函數(shù)的性質(zhì),求函數(shù)的解析式需確定的圖象上點的坐標,由此作輔助線求點B的坐標解決問題.三、解答題(共66分)19、(1)①;②;當x=1或x=4時,;(1)當時,一元二次方程有一個解;當>2時,一元二次方程無解;當<2時,一元二次方程有兩個解.【分析】(1)①首先根據(jù)題意得出點A、B的坐標,然后代入拋物線解析式即可得出其表達式;②首先由點A的坐標得出直線解析式,然后得出點P、Q坐標,根據(jù)平行構(gòu)建方程,即可得解;(1)首先得出,然后由PQ的最大值得出最大值,再利用二次函數(shù)圖象的性質(zhì)分類討論一元二次方程的解即可.【詳解】(1)①∵m=5,∴點A的坐標為(5,0).將x=0代入,得y=1.∴點B的坐標為(0,1).將A(5,0),B(0,1)代入,得解得∴拋物線的表達式為.②將A(5,0)代入,解得:.∴一次函數(shù)的表達為.∴點P的坐標為,又∵PQ∥y軸,∴點Q的坐標為∴∵,∴解得:,∴當x=1或x=4時,;(1)由題意知:設(shè),∴為的二次函數(shù),又<,∵長的最大值為2,∴最大值為2.∴由二次函數(shù)的圖象性質(zhì)可知當時,一元二次方程有一個解;當>2時,一元二次方程無解;當<2時,一元二次方程有兩個解..【點睛】此題主要考查一次函數(shù)與二次函數(shù)的綜合運用,熟練掌握,即可解題.20、(1)△FAG是等腰三角形,理由見解析;(2)成立,理由見解析;(3)BC=.【分析】(1)首先根據(jù)圓周角定理及垂直的定義得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,從而得到∠BAD=∠C,然后利用等弧對等角等知識得到AF=BF,從而證得FA=FG,判定等腰三角形;(2)成立,同(1)的證明方法即可得答案;(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F為BG的中點根據(jù)直角三角形的性質(zhì)得到AF=BF=BG=13,求得AD=AF﹣DF=13﹣5=8,根據(jù)勾股定理得到BD=12,AB=4,由∠ABC=∠ABD,∠BAC=∠ADB=90°可證明△ABC∽△DBA,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)△FAG等腰三角形;理由如下:∵BC為直徑,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC為直徑,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,∵AF=FG,∴BF=GF,即F為BG的中點,∵△BAG為直角三角形,∴AF=BF=BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD==12,∴在Rt△BDA中,AB==4,∵∠ABC=∠ABD,∠BAC=∠ADB=90°,∴△ABC∽△DBA,∴=,∴=,∴BC=,∴⊙O的直徑BC=.【點睛】本題考查圓周角定理、相似三角形的判定與性質(zhì)及勾股定理,在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似;熟練掌握相似三角形的判定定理是解題關(guān)鍵.21、(1),(2)或【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得;【詳解】(1)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>0,方程有兩個不相等的實數(shù)根,,∴;(2),移項得:,因式分解得:=0,∴或,解得:或.【點睛】本題主要考查了解一元二次方程-配方法和因式分解法,根據(jù)方程的不同形式,選擇合適的方法是解題的關(guān)鍵.22、(1)圖見解析;(1).【分析】(1)先根據(jù)位似圖形的性質(zhì)和位似比得出點的位置,再順次連接點即可得;(1)先根據(jù)點的位置得出它們的坐標,再根據(jù)點分別為的中點即可得出答案.【詳解】(1)先連接,再根據(jù)位似圖形的性質(zhì)和位似比可得點分別為的中點,再順次連接點即可得到,如圖所示:(1),且點分別為的中點,,即.【點睛】本題考查了位似圖形的性質(zhì)和位似比、畫位似圖形,掌握理解位似圖形的性質(zhì)和位似比是解題關(guān)鍵.23、(1);(2),;(3)答案見解析;(4)1.1.【分析】(1)利用相似三角形的性質(zhì)即可解決問題.

(2)求出當點F與點A重合時BE的值即可判斷x的取值范圍.

(3)利用描點法畫出函數(shù)圖象即可.

(4)畫出兩個函數(shù)圖象,量出點P的橫坐標即可解決問題.【詳解】解:(1)由,可得,∵,∴.故答案為:(2)由題意:.∵由,可得,∵,,.∴,∴.故答案為:;.(3)函數(shù)圖象如圖所示:(4)觀察圖象可知兩個函數(shù)的交點P的橫坐標約為1.1,故BE=1.1

故答案為1.1.【點睛】本題屬于一次函數(shù)綜合題,考查了相似三角形的判定和性質(zhì),函數(shù)圖象等知識,學(xué)會利用圖象法解決問題是解題的關(guān)鍵.24、(1)詳見解析;(2)【分析】(1)連接OC,由AC=BC,可得∠AOC=∠BOC,又CD⊥OA,CE⊥OB,由角平分線定理可得CD=CE;(2)由∠AOB=120°,∠AOC=∠BOC,可得∠AOC=60°,又∠CDO=90°,得∠OCD=30°,可得,由勾股定理可得,可得;同理可得,進而求出.【詳解】(1)證明:連接OC.∵AC=BC,∴∠AOC=∠BOC.∵CD⊥OA,CE⊥OB,∴CD=CE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論