2023屆山東省濱州市部分學校數(shù)學九上期末綜合測試試題含解析_第1頁
2023屆山東省濱州市部分學校數(shù)學九上期末綜合測試試題含解析_第2頁
2023屆山東省濱州市部分學校數(shù)學九上期末綜合測試試題含解析_第3頁
2023屆山東省濱州市部分學校數(shù)學九上期末綜合測試試題含解析_第4頁
2023屆山東省濱州市部分學校數(shù)學九上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,一次函數(shù)y=ax+a和二次函數(shù)y=ax2的大致圖象在同一直角坐標系中可能的是()A. B.C. D.2.若是方程的兩根,則的值是()A. B. C. D.3.如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點D是BC的中點,將△ABD沿AD翻折得到△AED,連CE,則線段CE的長等于()A.2 B. C. D.4.若兩個相似三角形的面積之比為1:4,則它們的周長之比為()A.1:2 B.2:1 C.1:4 D.4:15.如圖,已知在△ABC中,DE∥BC,,DE=2,則BC的長是()A.3 B.4 C.5 D.66.如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉(zhuǎn)90°到BP′,使點P′在△ABC內(nèi),已知∠AP′B=135°,若連接P′C,P′A:P′C=1:4,則P′A:P′B=()A.1:4 B.1:5 C.2: D.1:7.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數(shù)法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1058.已知⊙O的直徑為4,點O到直線l的距離為2,則直線l與⊙O的位置關(guān)系是A.相交 B.相切 C.相離 D.無法判斷9.如圖所示,⊙的半徑為13,弦的長度是24,,垂足為,則A.5 B.7 C.9 D.1110.將拋物線向上平移2個單位長度,再向右平移1個單位長度后,得到的拋物線解析是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖所示,在正方形ABCD中,G為CD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BD交AG于F點.已知FG=2,則線段AE的長度為_____.12.若正六邊形的內(nèi)切圓半徑為2,則其外接圓半徑為__________.13.反比例函數(shù)y=的圖象在第一、三象限,則m的取值范圍是_______.14.黃岡中學是百年名校,百年校慶上的焰火晚會令很多人記憶猶新.有一種焰火升高高度為h(m)與飛行時間t(s)的關(guān)系式是,若這種焰火在點燃升空后到最高處引爆,則從點火到引爆所需時間為__________s.15.如圖,已知AB是⊙O的直徑,弦CD與AB相交,若∠BCD=24°,則∠ABD的度數(shù)為___度.16.拋物線的對稱軸為直線______.17.分解因式:4x3﹣9x=_____.18.如圖,在□ABCD中,AB=5,AD=6,AD、AB、BC分別與⊙O相切于E、F、G三點,過點C作⊙O的切線交AD于點N,切點為M.當CN⊥AD時,⊙O的半徑為____.三、解答題(共66分)19.(10分)如圖,已知點D在△ABC的外部,AD∥BC,點E在邊AB上,AB?AD=BC?AE.(1)求證:∠BAC=∠AED;(2)在邊AC取一點F,如果∠AFE=∠D,求證:.20.(6分)如圖,一次函數(shù)的圖象和反比例函數(shù)的圖象相交于兩點.(1)試確定一次函數(shù)與反比例函數(shù)的解析式;(2)求的面積;(3)結(jié)合圖象,直接寫出使成立的的取值范圍.21.(6分)如圖,已知AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使DC=BD,連接AC,過點D作DE⊥AC,垂足為E.(1)求證:AB=AC;(2)求證:DE是⊙O的切線;(3)若⊙O的半徑為6,∠BAC=60°,則DE=________.22.(8分)如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?23.(8分)在△ABC中,∠ACB=90°,BC=kAC,點D在AC上,連接BD.(1)如圖1,當k=1時,BD的延長線垂直于AE,垂足為E,延長BC、AE交于點F.求證:CD=CF;(2)過點C作CG⊥BD,垂足為G,連接AG并延長交BC于點H.①如圖2,若CH=CD,探究線段AG與GH的數(shù)量關(guān)系(用含k的代數(shù)式表示),并證明;②如圖3,若點D是AC的中點,直接寫出cos∠CGH的值(用含k的代數(shù)式表示).24.(8分)如圖,是菱形的對角線,,(1)請用尺規(guī)作圖法,作的垂直平分線,垂足為,交于;(不要求寫作法,保留作圖痕跡)(2)在(1)條件下,連接,求的度數(shù).25.(10分)(1)如圖,已知AB、CD是大圓⊙O的弦,AB=CD,M是AB的中點.連接OM,以O為圓心,OM為半徑作小圓⊙O.判斷CD與小圓⊙O的位置關(guān)系,并說明理由;(2)已知⊙O,線段MN,P是⊙O外一點.求作射線PQ,使PQ被⊙O截得的弦長等于MN.(不寫作法,但保留作圖痕跡)26.(10分)由我國完全自主設計、自主建造的首艘國產(chǎn)航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.(參考數(shù)據(jù):,,,,,)

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)a的符號分類,當a>0時,在A、B中判斷一次函數(shù)的圖象是否相符;當a<0時,在C、D中判斷一次函數(shù)的圖象是否相符.【詳解】解:①當a>0時,二次函數(shù)y=ax2的開口向上,一次函數(shù)y=ax+a的圖象經(jīng)過第一、二、三象限,A錯誤,B正確;②當a<0時,二次函數(shù)y=ax2的開口向下,一次函數(shù)y=ax+a的圖象經(jīng)過第二、三、四象限,C錯誤,D錯誤.故選:B.【點睛】此題主要考查了二次函數(shù)與一次函數(shù)的圖象,利用二次函數(shù)的圖象和一次函數(shù)的圖象的特點求解.2、D【解析】試題分析:x1+x2=-=6,故選D考點:根與系數(shù)的關(guān)系3、D【分析】如圖連接BE交AD于O,作AH⊥BC于H.首先證明AD垂直平分線段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解決問題.【詳解】如圖連接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵?BC?AH=?AB?AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分線段BE,△BCE是直角三角形,∵?AD?BO=?BD?AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC=.故選D.點睛:本題考查翻折變換、直角三角形的斜邊中線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學會利用面積法求高,屬于中考??碱}型.4、A【解析】∵兩個相似三角形的面積之比為1:4,

∴它們的相似比為1:1,(相似三角形的面積比等于相似比的平方)

∴它們的周長之比為1:1.

故選A.【點睛】相似三角形的面積比等于相似比的平方,相似三角形的周長的比等于相似比.5、D【分析】由DE∥BC可證△ADE∽△ABC,得到,即可求BC的長.【詳解】∵DE∥BC,∴△ADE∽△ABC,∴,∵,DE=2,∴BC=1.故選D.【點睛】本題主要考查了相似三角形的判定與性質(zhì),解決本題的關(guān)鍵是要熟練掌握相似三角形的判定和性質(zhì).6、C【分析】連接AP,根據(jù)同角的余角相等可得∠ABP=∠CBP′,然后利用“邊角邊”證明△ABP和△CBP′全等,根據(jù)全等三角形對應邊相等可得AP=CP′,連接PP′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜邊等于直角邊的倍,代入整理即可得解.【詳解】解:如圖,連接AP,∵BP繞點B順時針旋轉(zhuǎn)90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,連接PP′,則△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,設P′A=x,則AP=4x,∴PP'=,∴P'B=PB=,∴P′A:P′B=2:,故選:C.【點睛】本題主要考查的是全等三角形的性質(zhì)以及判定,掌握全等三角形的五種判定方法的解本題的關(guān)鍵.7、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數(shù)法—表示較大的數(shù).8、B【分析】根據(jù)圓心距和兩圓半徑的之間關(guān)系可得出兩圓之間的位置關(guān)系.【詳解】∵⊙O的直徑為4,∴⊙O的半徑為2,∵圓心O到直線l的距離是2,∴根據(jù)圓心距與半徑之間的數(shù)量關(guān)系可知直線l與⊙O的位置關(guān)系是相切.故選:B.【點睛】本題考查了直線和圓的位置關(guān)系的應用,理解直線和圓的位置關(guān)系的內(nèi)容是解此題的關(guān)鍵,注意:已知圓的半徑是r,圓心到直線的距離是d,當d=r時,直線和圓相切,當d>r時,直線和圓相離,當d<r時,直線和圓相交.9、A【詳解】試題分析:已知⊙O的半徑為13,弦AB的長度是24,,垂足為N,由垂徑定理可得AN=BN=12,再由勾股定理可得ON=5,故答案選A.考點:垂徑定理;勾股定理.10、B【分析】把配成頂點式,根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:將拋物線向上平移2個單位長度,再向右平移1個單位長度后,得到的拋物線的解析式為:故選:B【點睛】考查的是二次函數(shù)的圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.二、填空題(每小題3分,共24分)11、2【解析】根據(jù)正方形的性質(zhì)可得出AB∥CD,進而可得出△ABF∽△GDF,根據(jù)相似三角形的性質(zhì)可得出2,結(jié)合FG=2可求出AF、AG的長度,由CG∥AB、AB=2CG可得出CG為△EAB的中位線,再利用三角形中位線的性質(zhì)可求出AE的長度,此題得解.【詳解】∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴2,∴AF=2GF=4,∴AG=1.∵CG∥AB,AB=2CG,∴CG為△EAB的中位線,∴AE=2AG=2.故答案為:2.【點睛】本題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)以及三角形的中位線,利用相似三角形的性質(zhì)求出AF的長度是解題的關(guān)鍵.12、【分析】根據(jù)題意畫出草圖,可得OG=2,,因此利用三角函數(shù)便可計算的外接圓半徑OA.【詳解】解:如圖,連接、,作于;則,∵六邊形正六邊形,∴是等邊三角形,∴,∴,∴正六邊形的內(nèi)切圓半徑為2,則其外接圓半徑為.故答案為.【點睛】本題主要考查多邊形的內(nèi)接圓和外接圓,關(guān)鍵在于根據(jù)題意畫出草圖,再根據(jù)三角函數(shù)求解,這是多邊形問題的解題思路.13、m>1【分析】由于反比例函數(shù)y=的圖象在一、三象限內(nèi),則m-1>0,解得m的取值范圍即可.【詳解】解:由題意得,反比例函數(shù)y=的圖象在一、三象限內(nèi),則m-1>0,解得m>1.故答案為m>1.【點睛】本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練的掌握反比例函數(shù)的性質(zhì).14、1【解析】根據(jù)關(guān)系式可知焰火的運行軌跡是一個開口向下的拋物線,已知焰火在升到最高時引爆,即到達拋物線的頂點時引爆,頂點橫坐標就是從點火到引爆所需時間.則t==1s,故答案為1.15、66【解析】連接AD,根據(jù)圓周角定理可求∠ADB=90°,由同弧所對圓周角相等可得∠DCB=∠DAB,即可求∠ABD的度數(shù).【詳解】解:連接AD,∵AB是直徑,∴∠ADB=90°,∵∠BCD=24°,∴∠BAD=∠BCD=24°,∴∠ABD=66°,故答案為:66【點睛】本題考查了圓周角定理,根據(jù)圓周角定理可求∠ADB=90°是本題的關(guān)鍵.16、【分析】將題目中的函數(shù)解析式化為頂點式,即可寫出該拋物線的對稱軸.【詳解】∵拋物線y=x2+8x+2=(x+1)2﹣11,∴該拋物線的對稱軸是直線x=﹣1.故答案為:x=﹣1.【點睛】本題考查了二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.17、x(2x+3)(2x﹣3)【分析】先提取公因式x,再利用平方差公式分解因式即可.【詳解】原式=x(4x2﹣9)=x(2x+3)(2x﹣3),故答案為:x(2x+3)(2x﹣3)【點睛】本題考查了提公因式法與公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.18、2或1.5【分析】根據(jù)切線的性質(zhì),切線長定理得出線段之間的關(guān)系,利用勾股定理列出方程解出圓的半徑.【詳解】解:設半徑為r,∵AD、AB、BC分別與⊙O相切于E、F、G三點,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,

(7-r)2+(2r)2=52,解得r=2或1.5.故答案為:2或1.5.【點睛】本題考查了切線的性質(zhì),切線長定理,勾股定理,平行四邊形的性質(zhì),正確得出線段關(guān)系,列出方程是解題關(guān)鍵.三、解答題(共66分)19、見解析【解析】(1)欲證明∠BAC=∠AED,只要證明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再證明四邊形ADEF是平行四邊形,推出DE=AF,即可解決問題;【詳解】證明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四邊形ADEF是平行四邊形,∴DE=AF,∴.【點睛】本題考查相似三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.20、(1)反比例函數(shù)的解析式為,一次函數(shù)的解析式為;(2)8;(3)或.【分析】(1)將點A代入反比例函數(shù)中求出反比例函數(shù)的解析式,再根據(jù)反比例函數(shù)求出點B的坐標,最后將A和B的坐標代入一次函數(shù)解析式中求出一次函數(shù)的解析式;(2)求出一次函數(shù)與x軸的交點坐標,再利用割補法得到,即可得出答案;(3)根據(jù)圖像判斷即可得出答案.【詳解】解:(1)∵在反比例函數(shù)的圖象上,∴,則反比例函數(shù)的解析式為.將代入,得,∴.將兩點的坐標分別代入,得解得則一次函數(shù)的解析式為.(2)設一次函數(shù)的圖象與軸的交點為.在中,令,得,∴,即,則.(3)∵即一次函數(shù)的圖像在反比例函數(shù)的圖像的上方∴或.【點睛】本題考查的是一次函數(shù)與反比例函數(shù)的綜合,難度不高,需要熟練掌握一次函數(shù)與反比例函數(shù)的圖像與性質(zhì).21、(1)見解析;(2)見解析;(3).【分析】(1)連接AD,由直徑所對的圓周角度數(shù)及中點可證AD是BC的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)可得結(jié)論;(2)連接OD,由中位線的性質(zhì)可得OD∥AC,由平行的性質(zhì)與切線的判定可證;(3)易知是等邊三角形,由等邊三角形的性質(zhì)可得CB長及度數(shù),利用直角三角形30度角的性質(zhì)及勾股定理可得結(jié)果.【詳解】(1)連接AD.∵AB是⊙O的直徑,∴∠ADB=90°.又∵DC=BD,AD是BC的垂直平分線∴AB=AC.(2)連接OD.∵DE⊥AC,∴∠CED=90°.∵O為AB中點,D為BC中點,∴OD∥AC.∴∠ODE=∠CED=90°.∴DE是⊙O的切線.(3)由(1)得是等邊三角形在中,根據(jù)勾股定理得【點睛】本題考查了圓與三角形的綜合,涉及的知識點主要有圓的切線的判定、圓周角定理的推論、垂直平分線的性質(zhì)、等邊三角形與直角三角形的性質(zhì),靈活的將圖形與已知條件相結(jié)合是解題的關(guān)鍵.22、1米/秒【解析】分析:過點C作CD⊥AB于點D,設AD=x米,小明的行走速度是a米/秒,根據(jù)直角三角形的性質(zhì)用x表示出AC與BC的長,再根據(jù)小明與小軍同時到達山頂C處即可得出結(jié)論.本題解析:解:過點C作CD⊥AB于點D.設AD=x米,小明的行走速度是a米/秒.∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x(米).在Rt△BCD中,∵∠B=30°,∴BC==2x(米).∵小軍的行走速度為米/秒,若小明與小軍同時到達山頂C處,∴=,解得a=1.答:小明的行走速度是1米/秒.23、(1)證明見解析;(2)①,證明見解析;②cos∠CGH=.【分析】(1)只要證明△ACF≌△BCD(ASA),即可推出CF=CD.(2)結(jié)論:.設CD=5a,CH=2a,利用相似三角形的性質(zhì)求出AM,再利用平行線分線段成比例定理即可解決問題.(3)如圖3中,設AC=m,則BC=km,m,想辦法證明∠CGH=∠ABC即可解決問題.【詳解】(1)證明:如圖1中,∵∠ACB=90°,BE⊥AF∴∠ACB=∠ACF=∠AEB=90°∵∠ADE+∠EAD=∠BDC+∠DBC=90°,∠ADE=∠BDC,∴∠CAF=∠DBC,∵BC=AC,∴△ACF≌△BCD(ASA),∴CF=CD.(2)解:結(jié)論:.理由:如圖2中,作AM⊥AC交CG的延長線于M.∵CG⊥BD,MA⊥AC,∴∠CAM=∠CGD=∠BCD=90°,∴∠ACM+∠CDG=90°,∠ACM+∠M=90°,∴∠CDB=∠M,∴△BCD∽△CAM,∴=k,∵CH=CD,設CD=5a,CH=2a,∴AM=,∵AM∥CH,∴,∴.(3)解:如圖3中,設AC=m,則BC=km,m,∵∠DCB=90°,CG⊥BD,∴△DCG∽△DBC,∴DC2=DG?DB,∵AD=DC,∴AD2=DG?DB,∴,∵∠ADG=∠BDA,∴△ADG∽△BDA,∴∠DAG=∠DBA,∵∠AGD=∠GAB+∠DBA=∠GAB+∠DAG=∠CAB,∵∠AGD+∠CGH=90°,∠CAB+∠ABC=90°,∴∠CGH=∠ABC,∴.【點睛】本題為四邊形綜合探究題,考查相似三角形、三角函數(shù)等知識,解題時注意相似三角形的性質(zhì)和平行線分線段成比例定理的應用.24、(1)答案見解析;(2)45°.【分析】(1)分別以A、B為圓心,大于長為半徑畫弧,過兩弧的交點作直線即可;(2)根據(jù)∠DBF=∠ABD﹣∠ABF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論