材料力學(xué)課件 1_第1頁(yè)
材料力學(xué)課件 1_第2頁(yè)
材料力學(xué)課件 1_第3頁(yè)
材料力學(xué)課件 1_第4頁(yè)
材料力學(xué)課件 1_第5頁(yè)
已閱讀5頁(yè),還剩52頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Example1-1Theforceswithmagnitudes5P、8P、4PandPactrespectivelyatpointsA、B、C、Doftherod.Theirdirectionsareshowninthefigure.Trytoplotthediagramoftheaxialforceoftherod.[例1-1]圖示桿的A、B、C、D點(diǎn)分別作用著大小為5P、8P、4P、P的力,方向如圖,試畫(huà)出桿的軸力圖。ABCDPAPBPCPDOABCDPAPBPCPDN11Solution:DeterminetheinternalforceN1insegmentOA.Takethefreebodyasshowninthefigure.解:求OA段內(nèi)力N1:設(shè)置截面如圖ABCDPAPBPCPDOABCDPAPBPCPDN12Similarly,wegettheinternalforcesinsegmentAB、BC、CD.Theyarerespectively:

同理,求得AB、BC、CD段內(nèi)力分別為:

N2=–3P

N3=5PN4=PBCDPBPCPDN2CDPCPDN3DPDN43Thediagramoftheaxialforceisshownintherightfigure.軸力圖如右圖Nx2P3P5PP++–Characteristicofthediagramoftheaxialforce:Valueofsuddenchange=concentratedload軸力圖的特點(diǎn):突變值=集中載荷

4Simplemethodtoplotthediagramofaxialforce:Fromthelefttotheright:軸力(圖)的簡(jiǎn)便求法:自左向右:IfmeetingtheforcePtotheleft,theincreaseoftheaxialforceNispositive;遇到向左的P,軸力N

增量為正;5kN8kN3kN+–3kN5kN8kNIfmeetingtheforcetotheright,theincreaseoftheaxialforceNisnegative.遇到向右的P,軸力N增量為負(fù)。5Example1-2LengthoftherodshowninthefigureisL.Distributedforceq=kxisactedonit,directionoftheforceisshowninthefigure.Trytoplotthediagramofaxialforceofthetherod.[例1-2]圖示桿長(zhǎng)為L(zhǎng),受分布力q(x)=kx作用,方向如圖,試畫(huà)出桿的軸力圖。Lq(x)ox6Solution:Thefreeendoftherodistheoriginofthecoordinateandcoordinatextotherightispositive.Takethesegmentoflengthxontheleftofpointx,itsinternalforceis解:x坐標(biāo)向右為正,坐標(biāo)原點(diǎn)在自由端。取左側(cè)x段為對(duì)象,內(nèi)力N(x)為:N(x)xq(x)NxO–K

LxOq7Example1-3AcircularrodissubjectedtoatensileforceP=25kN.Itsdiameterisd=14mmanditsallowablestressis[]=170MPa.Trytocheckthestrengthoftherod.[例1-3]已知一圓桿受拉力P=25kN,直徑d=14mm,許用應(yīng)力[]=170MPa,試校核此桿是否滿足強(qiáng)度要求。8Solution:解:(2)Stress:應(yīng)力:(3)Checkthestrength:強(qiáng)度校核:(4)Conclusion:Thestrengthoftherodsatisfiesrequest.Therodcanworknormally.結(jié)論:此桿滿足強(qiáng)度要求,能夠正常工作。(1)Axialforce:N=P=25kN軸力:N=P=25kN9

Example1-4Athree-pinhouseframeonwhichaverticaluniformload,withtheindensityintensityisq=4.2kN/misappliedisshowninthefigure.Diameterofthesteeltensilerodintheframeisd=16mmanditsallowablestressis[]=170MPa.Trytocheckthestrengthoftherod.[例1-4]已知三鉸屋架如圖,承受豎向均布載荷,載荷的分布集度為:q=4.2kN/m,屋架中的鋼拉桿直徑d=16mm,許用應(yīng)力[]=170MPa。試校核鋼拉桿的強(qiáng)度。Tiebar4.2m8.5m10(1)Determinethereactionsfirstaccordingtotheglobalequilibrium整體平衡求支反力Solution:解:Tiebar8.5m4.2mRARBHA11(3)Stress

應(yīng)力:(2)Determinetheaxialforceaccordingtothepartialequilibrium:

局部平衡求軸力:RAHARCHCN12(4)Strengthcheckandconclusion:

強(qiáng)度校核與結(jié)論:Thisrodsatisfiestherequestofstrength.Itissafe.此桿滿足強(qiáng)度要求,是安全的。RAHARCHCN13hCxLqPABDExample1-5Asimplecraneisshowninthefigure.ACisarigidbeam,sumweightofthehoistandheavybodythatisliftedisP.Whatshouldbetheanglesothattherod

BDhastheminimumweight?Theallowablestressoftherod[]isknown.[例1-5]簡(jiǎn)易起重機(jī)構(gòu)如圖,AC為剛性梁,吊車與吊起重物總重為P,為使BD桿最輕,角應(yīng)為何值?已知BD桿的許用應(yīng)力為[]。14Analysis:分析:CxLhqPABDSolution:解:(1)Internalforce

N((q)oftherodBD:TakeACasourstudyobjectasshowninthefigure.

BD桿內(nèi)力N(q):

取AC為研究對(duì)象,如圖15(2)Thecross-sectionareaAoftherodBD:

BD桿橫截面面積A:LNBDYAXAqxPABC16LYAXAqNBDxPABC(3)DeterminetheminimumvalueofVBD

求VBD的最小值:174.Stressesintheinclinedsectionoftherodintensionorcompression

拉(壓)桿斜截面上的應(yīng)力PPkka

PkkaPaAssumeastraightrodissubjectedtoatensileforceP.Determinethestressintheinclinedsectionk-k.

設(shè)有一等直桿受拉力P作用。求:斜截面k-k上的應(yīng)力。18Aa:Areaoftheinclinedsection;

Aa:斜截面面積;PPkkaPkkaPaPa=PSolution:Adoptthemethodofsection.解:采用截面法Accordingtotheequilibriumequation:由平衡方程:

Then則Pa:Internalforceintheinclinedsection.Pa:斜截面上內(nèi)力。19

PPkkaPkkaPaFromgeometricrelation由幾何關(guān)系:Substitutingitintotheaboveformulaweget:代入上式,得:Wholestressintheinclinedsection:斜截面上全應(yīng)力:20Decomposition:分解:pa=Itindicatesthechangeofstressesindifferentsectionsthroughapoint.反映:通過(guò)構(gòu)件上一點(diǎn)不同截面上應(yīng)力變化情況。Wholestressintheinclinedsection:斜截面上全應(yīng)力:PPkkaPkkapatasaa21As=90°,As=0,90°,As=0°,(Themaximumnormalstressexistsinthecrosssection)(橫截面上存在最大正應(yīng)力)PPkkaPkkapatasaaAs=±45°,(Themaximumshearingstressexistsintheinclinedsectionof45°)當(dāng)=0°時(shí),當(dāng)=90°時(shí),當(dāng)=±45°時(shí),(45°斜截面上剪應(yīng)力達(dá)到最大)當(dāng)=0,90°時(shí),22Example1-6Arod,whichthediameterd=1cmissubjectedtoatensileforceP=10kN.Determinethemaximumshearingstress,thenormalstressandshearingstressintheinclinedsectionofanangle30°aboutthecrosssection.[例1-6]直徑為d=1cm桿受拉力P=10kN的作用,試求最大剪應(yīng)力,并求與橫截面夾角30°的斜截面上的正應(yīng)力和剪應(yīng)力。23Solution:Stressesintheinclinedsectionoftherodintensionorcompressioncanbedetermineddirectlybytheformula:解:拉壓桿斜截面上的應(yīng)力,直接由公式求之:24Example1-7

Atensilerodasshowninthefigureismadefromtwopartsgluedmutuallytogetheralong

mn.Itissubjectedtotheactionofforce

P.Assumethattheallowablenormalstressis[]=100MPaandallowableshearingstressis[]=50MPafortheadhesive.AreaofcrosssectionoftherodisA=4cm2.Ifstrengthoftherodiscontrolledbytheadhesivewhatistheangle(:between00~600)togetthelargesttensileforce?[例1-7]圖示拉桿沿mn由兩部分膠合而成,受力P,設(shè)膠合面的許用拉應(yīng)力為[]=100MPa;許用剪應(yīng)力為[]=50MPa,并設(shè)桿的強(qiáng)度由膠合面控制,桿的橫截面積為A=4cm2,試問(wèn):為使桿承受最大拉力,角值應(yīng)為多大?(規(guī)定:在0~60度之間)。25Combine(1)、(2)andget:聯(lián)立(1)、(2)得:Solution:解:PPmnaPa600300B0026Thecurvesofformula(1)and、(2)areshownintheTig.(2).ObviouslythestrengthoftherodontheleftofpointBiscontrolledbythenormalstress,thatontherightofpointBiscontrolledbytheshearingstress.Asa=60°,fromformula(2)wecanget(1)、(2)式的曲線如圖(2),顯然,B點(diǎn)左側(cè)由正應(yīng)力控制桿的強(qiáng)度,B點(diǎn)右側(cè)由剪應(yīng)力控制桿的強(qiáng)度,當(dāng)a=60°時(shí),由(2)式得Pa600300B100Discussion:As討論:若27Solution:

Atthepointofintersectionofcurves(1)and(2):解:(1)、(2)曲線交點(diǎn)處:Pa600300B100281.Howtoplottheenlargementsketchofthesmalldeformation1.怎樣畫(huà)小變形放大圖?2)Accuratemethodtoplotdiagramofdeformation,thearclineasshowninthefigure;

變形圖嚴(yán)格畫(huà)法,圖中弧線;1)Determinedeformation△LiofeachrodasshowninFigl.

求各桿的變形量△Li,如圖1;3)Approximatemethodtoplotthediagramofdeformation;thetangentofthearclineshowninthefigure.

變形圖近似畫(huà)法,圖中弧之切線。Example1-8Enlargementsketchofthesmalldeformationtheandmethodtodeterminedisplacements[例1-8]小變形放大圖與位移的求法。C'ABCL1L2PC"292.WritetherelationbetweenthedisplacementofpointBshowninFig.2anddeformationsoftworods.寫(xiě)出圖2中B點(diǎn)位移與兩桿變形間的關(guān)系A(chǔ)BCL1L2B'PFig.2圖230Solution:ThediagramofdeformationisshownintheFig.2.PointBmovestopointB',F(xiàn)romthediagramofdisplacementwemayknow:解:變形圖如圖2,B點(diǎn)位移至B'點(diǎn),由圖知:ABCL1L2B'PFig.2圖231800400400DCPAB60°60°Example1-9

SupposethecrossbeamABCDisrigid.Asteelcablewiththecross-sectionarea76.36mm2isaroundapulleywithoutfriction.KnowingP=20kN,E=177GPa.DeterminethestressofthesteelcableandtheuprightdisplacementofpointC.[例1-9]設(shè)橫梁ABCD為剛梁,橫截面面積為76.36mm2的鋼索繞過(guò)無(wú)摩擦的定滑輪。設(shè)P=20kN,試求鋼索內(nèi)的應(yīng)力和C點(diǎn)的垂直位移。設(shè)鋼索的E=177GPa。321)Determinetheinternalforceofthesteelcable:TakeABDasourstudyobject:求鋼索內(nèi)力:以ABCD為研究對(duì)象2)Stressandelongationofthesteelcable鋼索的應(yīng)力和伸長(zhǎng)分別為:

PABCDTTYAXA800400400DCPAB60°60°Solution:method1Enlargementsketchmethodofthesmalleformation.

解:方法1

:小變形放大圖法:333)Deformationisshowninthefigure.

UprightdisplacementofpointCis:變形圖如左圖,C點(diǎn)的垂直位移為DCPAB60°60°800400400AB60°60°DB'D'C拉壓AxialTensionandCompression34800400400CPAB60°60°PABCDTTYAXAExample1-9SupposethecrossbeamABCDisrigid.Asteelcablewiththecross-sectionarea76.36mm2isaroundapulleywithoutfriction.KnowingP=20kN,E=177GPa.DeterminethestressofthesteelcableandtheuprightdisplacementofpointC.[例1-9]設(shè)橫梁ABCD為剛梁,橫截面面積為76.36mm2的鋼索繞過(guò)無(wú)摩擦的定滑輪。設(shè)P=20kN,試求鋼索內(nèi)的應(yīng)力和C點(diǎn)的垂直位移。設(shè)鋼索的E=177GPa。35800400400CPAB60°60°PABCDTTYAXASolution:Method2:Energymethod:(Workofexternalforcesisequaltothestrainenergy)解:方法2:能量法:(外力功等于變形能)1)Determinetheinternalforceofthesteelcable:TakeABCDasourstudyobject:求鋼索內(nèi)力:以ABCD為研究對(duì)象:362)Stressofthesteelcableis:鋼索的應(yīng)力為:3)Displacementofpoint

Cis:

C點(diǎn)位移為:Energymethod:Themethodbywhichtheproblemsrelativetotheelasticdeformationofthestructuremembersaresoloedaccordingtotheconceptofstrainenergyiscalledtheenergymethod.

能量法:利用應(yīng)變能的概念解決與結(jié)構(gòu)物或構(gòu)件的彈性變形有關(guān)的問(wèn)題,這種方法稱為能量法。800400400CPAB60°60°37CPABD123PAN1N3N2Example1-10Rods1,2and3areconnectedtogetherwithapinasshowninthefigure.Knowingthelengthofeachrodis:L1=L2、L3=L;andtheareaofeachrodisA1=A2=A,A3;modulusofelasticityofeachrodis:E1=E2=E、E3.Externalforceisalongtheuprightdirection.Determinetheinternalforceofeachrod.[例1-10]設(shè)1、2、3三桿用鉸鏈連接如圖,已知:各桿長(zhǎng)為:L1=L2、L3=L;各桿面積為A1=A2=A、A3;各桿彈性模量為:E1=E2=E、E3。外力沿鉛垂方向,求各桿的內(nèi)力。38

Equilibriumequations:

平衡方程:CPABD123PAN1N3N2Solution:

解:39Geometricequation—compatibilityequationofdeformation:

幾何方程——變形協(xié)調(diào)方程:Physicalequation—elasticlaw:

物理方程——彈性定律:CABD123A140Solvingtheequilibriumequationsandcomplementaryequationweget:

解由平衡方程和補(bǔ)充方程組成的方程組,得:CABD123A1Complementaryequation:detainingfromthegeometricequationandphysicalequation.

補(bǔ)充方程:由幾何方程和物理方程得。41P1mPExample1-11Fouranglesofawoodenpolearereinforcedwithfourequalleganglesteelof40404.Theallowablestressesofsteelandwoodarerespectively[]1=160MPaand[]2=12MPa,moduleofelasticityofthemareE1=200GPaandE2=10GPa.RespectivelyDeterminetheallowablepermissibleloadP.[例1-11]木制短柱的四角用四個(gè)40404的等邊角鋼加固,角鋼和木材的許用應(yīng)力分別為[]1=160MPa和[]2=12MPa,彈性模量分別為E1=200GPa和E2=10GPa;求許可載荷P。42Geometricequation

幾何方程Physicalequationandcomplementaryequation:

物理方程及補(bǔ)充方程:Equilibriumequations:

平衡方程:PPy4N1N2Solution:解:43PPy4N1N2Solvingequilibriumequationsandthecomplementaryequationweget:

解平衡方程和補(bǔ)充方程,得:Determinethepermissibleloadofthestructure:

Method1:

求結(jié)構(gòu)的許可載荷:方法1:44A1=3.086cm2PPy4N1N2Sectionareaoftheanglesteelmaybeobtainedfromthetableofhot-rolledsteel:角鋼截面面積由型鋼表查得:45Inthecaseof△1=△2,theanglesteelwillreachthelimitstatefirst,thatisthemaximumloadisdeterminedbytheanglesteel.

所以在△1=△2的前提下,角鋼將先達(dá)到極限狀態(tài),即角鋼決定最大載荷。Determinethepermissibleloadofthestructure:

求結(jié)構(gòu)的許可載荷:

Method2:方法2:46

aaaaN1N2Example1-12

Theupperandlowerendsofaladder-likesteelshaftarefixedattemperatureT1=5℃asshowninthefigure.Areasoftheupperandlowersegmentsarerespectively1=cm2and

2=cm2.WhenitstemperaturereachesT2=25℃,determinethetemperaturestressofeachrod.(Linearthermalexpansioncoefficient

=

12.5×10-61/0C;modulusofelasticity

E=200GPa)

[例12]如圖,階梯鋼桿的上下兩端在T1=5℃時(shí)被固定,桿的上下兩段的面積分別=cm2,

=cm2,當(dāng)溫度升至T2=25℃時(shí),求各桿的溫度應(yīng)力。(線膨脹系數(shù)=;彈性模量E=200GPa12.5×10-6/℃

)47

aaaaN1N2Geometricequation:

幾何方程:

Equilibriumequation:

平衡方程:Physicalequation:物理方程Solution:解:48Solvingequilibriumequationsandthecomplementaryequationweget:

解平衡方程和補(bǔ)充方程,得:Complementaryequation:

補(bǔ)充方程Temperaturestresses:

溫度應(yīng)力49Example1-13Diameterofacopperwireisd=2mmanditslengthisL=500mm.Tensilecurveofcopperisshowninthefigure.Tomakeelongationofthecopperwireis30mmwhetistheforcePthatwemustact

?[例1-13]銅絲直徑d=2mm,長(zhǎng)L=500mm,材料的拉伸曲線如圖所示。如欲使銅絲的伸長(zhǎng)量為30mm,則大約需加多大的力P?

s(MPa)e(%)50Solution:Deformationmayexceedtherangeoflinearelasticity,thereforetheelasticlawisnotappliedhere.Calculationshouldbedoneinthefollowing:解:變形量可能已超出了“線彈性”范圍,故,不可再應(yīng)用“彈性定律”。應(yīng)如下計(jì)算:Fromthetensilecurve:由拉伸圖知:s(MPa)e(%)511.KnowingtheelasticmodulusofsteelisE=200GPa,theelasticmodulusofAluminumisE=71GPa.Trytocompare:①whichmaterialproducesalargerstrainwhentheyaresubjectedtothesamestress?②whichmaterialcorrespondstoalargestresswhentheyhavethesamestrain?

鋼的彈性模量E=200GPa,鋁的彈性模量E=71GPa。試比較在同一應(yīng)力作用下,那種材料的應(yīng)變大?在產(chǎn)生同一應(yīng)變的情況下,那種材料的應(yīng)力大?Chapter1Exercises第一章練習(xí)題522.Forthedifferentmembersmadeofasamematerial,dotheyhavethe

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論