版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,已知邊長(zhǎng)為2的正三角形ABC頂點(diǎn)A的坐標(biāo)為(0,6),BC的中點(diǎn)D在y軸上,且在點(diǎn)A下方,點(diǎn)E是邊長(zhǎng)為2、中心在原點(diǎn)的正六邊形的一個(gè)頂點(diǎn),把這個(gè)正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣22.如圖所示圖形中,不是正方體的展開圖的是()A. B.C. D.3.若△ABC與△DEF相似,相似比為2:3,則這兩個(gè)三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:44.已知點(diǎn)A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函數(shù)y=的圖象上,則y1、y2、y3的大小關(guān)系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y25.如圖所示的幾何體的俯視圖是()A. B. C. D.6.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+17.已知二次函數(shù)y=﹣(x﹣h)2+1(為常數(shù)),在自變量x的值滿足1≤x≤3的情況下,與其對(duì)應(yīng)的函數(shù)值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+8.有若干個(gè)完全相同的小正方體堆成一個(gè)如圖所示幾何體,若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個(gè)數(shù)為()A.2 B.3 C.4 D.59.如圖,小正方形邊長(zhǎng)均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.10.長(zhǎng)度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.11.從﹣1,2,3,﹣6這四個(gè)數(shù)中任選兩數(shù),分別記作m,n,那么點(diǎn)(m,n)在函數(shù)y=圖象上的概率是()A. B. C. D.12.在,,則的值為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.瑞士的一位中學(xué)教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請(qǐng)你根據(jù)這個(gè)規(guī)律寫出第9個(gè)數(shù)_____.14.如圖,BD是⊙O的直徑,BA是⊙O的弦,過點(diǎn)A的切線交BD延長(zhǎng)線于點(diǎn)C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長(zhǎng)為_____.15.計(jì)算的結(jié)果等于_____.16.如圖,直線l1∥l2∥l3,等邊△ABC的頂點(diǎn)B、C分別在直線l2、l3上,若邊BC與直線l3的夾角∠1=25°,則邊AB與直線l1的夾角∠2=________.17.如圖,AB是⊙O的弦,點(diǎn)C在過點(diǎn)B的切線上,且OC⊥OA,OC交AB于點(diǎn)P,已知∠OAB=22°,則∠OCB=__________.18.如圖,有一塊邊長(zhǎng)為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點(diǎn)落在A點(diǎn),兩條直角邊分別與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E.則四邊形AECF的面積是.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)計(jì)算:﹣22﹣+|1﹣4sin60°|20.(6分)已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點(diǎn),C,D是該雙曲線另一支上兩點(diǎn),且A、B、C、D四點(diǎn)按順時(shí)針順序排列.(1)如圖,若m=﹣,n=,點(diǎn)B的縱坐標(biāo)為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡(jiǎn)述作法;(2)若四邊形ABCD為矩形,A的坐標(biāo)為(1,5),①求m,n的值;②點(diǎn)P(a,b)是雙曲線y=第一象限上一動(dòng)點(diǎn),當(dāng)S△APC≥24時(shí),則a的取值范圍是.21.(6分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大?。?2.(8分)中央電視臺(tái)的“中國(guó)詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富.某班模擬開展“中國(guó)詩詞大賽”比賽,對(duì)全班同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“A優(yōu)秀”、“B一般”、“C較差”、“D良好”四個(gè)等級(jí),并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問題:(1)本班有多少同學(xué)優(yōu)秀?(2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖.(3)學(xué)校預(yù)全面推廣這個(gè)比賽提升學(xué)生的文化素養(yǎng),估計(jì)該校3000人有多少人成績(jī)良好?23.(8分)如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點(diǎn),連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點(diǎn)P.求反比例函數(shù)y=的表達(dá)式;求點(diǎn)B的坐標(biāo);求△OAP的面積.24.(10分)如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC的長(zhǎng)為0.60m,底座BC與支架AC所成的角∠ACB=75°,點(diǎn)A、H、F在同一條直線上,支架AH段的長(zhǎng)為1m,HF段的長(zhǎng)為1.50m,籃板底部支架HE的長(zhǎng)為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結(jié)果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)25.(10分)如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點(diǎn),BE交AC于F,連接DF.(1)證明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.26.(12分)將二次函數(shù)的解析式化為的形式,并指出該函數(shù)圖象的開口方向、頂點(diǎn)坐標(biāo)和對(duì)稱軸.27.(12分)某地2015年為做好“精準(zhǔn)扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2017年在2015年的基礎(chǔ)上增加投入資金1600萬元.從2015年到2017年,該地投入異地安置資金的年平均增長(zhǎng)率為多少?在2017年異地安置的具體實(shí)施中,該地計(jì)劃投入資金不低于500萬元用于優(yōu)先搬遷租房獎(jiǎng)勵(lì),規(guī)定前1000戶(含第1000戶)每戶每天獎(jiǎng)勵(lì)8元,1000戶以后每戶每天補(bǔ)助5元,按租房400天計(jì)算,試求今年該地至少有多少戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì)?
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】分析:首先得到當(dāng)點(diǎn)E旋轉(zhuǎn)至y軸上時(shí)DE最小,然后分別求得AD、OE′的長(zhǎng),最后求得DE′的長(zhǎng)即可.詳解:如圖,當(dāng)點(diǎn)E旋轉(zhuǎn)至y軸上時(shí)DE最??;∵△ABC是等邊三角形,D為BC的中點(diǎn),∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長(zhǎng)等于其半徑,正六邊形的邊長(zhǎng)為2,∴OE=OE′=2∵點(diǎn)A的坐標(biāo)為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點(diǎn)睛:本題考查了正多邊形的計(jì)算及等邊三角形的性質(zhì),解題的關(guān)鍵是從圖形中整理出直角三角形.2、C【解析】
由平面圖形的折疊及正方形的展開圖結(jié)合本題選項(xiàng),一一求證解題.【詳解】解:A、B、D都是正方體的展開圖,故選項(xiàng)錯(cuò)誤;C、帶“田”字格,由正方體的展開圖的特征可知,不是正方體的展開圖.故選C.【點(diǎn)睛】此題考查正方形的展開圖,難度不大,但是需要空間想象力才能更好的解題3、C【解析】
由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個(gè)三角形的面積比為4:1.故選C.【點(diǎn)睛】此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.4、B【解析】
分別把各點(diǎn)代入反比例函數(shù)的解析式,求出y1,y2,y3的值,再比較出其大小即可.【詳解】∵點(diǎn)A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函數(shù)y=的圖象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故選B.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,反比例函數(shù)值的大小比較,熟練掌握反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)滿足函數(shù)的解析式是解題的關(guān)鍵.5、D【解析】
找到從上面看所得到的圖形即可,注意所有看到的棱都應(yīng)表現(xiàn)在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項(xiàng)D所示視圖一致.故選D.【點(diǎn)睛】本題考查了簡(jiǎn)單組合體三視圖的知識(shí),俯視圖是從物體的上面看得到的視圖.6、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質(zhì)結(jié)合S△ADE=S四邊形BCED,可得出,結(jié)合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),牢記相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.7、C【解析】
∵當(dāng)x<h時(shí),y隨x的增大而增大,當(dāng)x>h時(shí),y隨x的增大而減小,∴①若h<1≤x≤3,x=1時(shí),y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當(dāng)x=3時(shí),y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點(diǎn)睛:本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的增減性和最值分兩種情況討論是解題的關(guān)鍵.8、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側(cè)正方體上添加1個(gè),往第3排中間正方體上添加2個(gè)、右側(cè)兩個(gè)正方體上再添加1個(gè),即一共添加4個(gè)小正方體,故選C.9、B【解析】
根據(jù)網(wǎng)格的特點(diǎn)求出三角形的三邊,再根據(jù)相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項(xiàng)B的各邊為1、、與它的各邊對(duì)應(yīng)成比例.故選B.【點(diǎn)晴】此題主要考查相似三角形的判定,解題的關(guān)鍵是熟知相似三角形的判定定理.10、D【解析】先將25100用科學(xué)記數(shù)法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D11、B【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與點(diǎn)(m,n)恰好在反比例函數(shù)y=圖象上的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(diǎn)(m,n)恰好在反比例函數(shù)y=圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(diǎn)(m,n)在函數(shù)y=圖象上的概率是:.故選B.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.12、A【解析】
本題可以利用銳角三角函數(shù)的定義求解即可.【詳解】解:tanA=,
∵AC=2BC,
∴tanA=.
故選:A.【點(diǎn)睛】本題考查了正切函數(shù)的概念,掌握直角三角形中角的對(duì)邊與鄰邊的比是關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、.【解析】
分子的規(guī)律依次是:32,42,52,62,72,82,92…,分母的規(guī)律是:規(guī)律是:5+7=1212+9=2121+11=3232+13=45…,即分子為(n+2)2,分母為n(n+4).【詳解】解:由題可知規(guī)律,第9個(gè)數(shù)的分子是(9+2)2=121;第五個(gè)的分母是:32+13=45;第六個(gè)的分母是:45+15=60;第七個(gè)的分母是:60+17=77;第八個(gè)的分母是:77+19=96;則第九個(gè)的分母是:96+21=1.因而第九個(gè)數(shù)是:.故答案為:.【點(diǎn)睛】主要考查了學(xué)生的分析、總結(jié)、歸納能力,規(guī)律型的習(xí)題一般是從所給的數(shù)據(jù)和運(yùn)算方法進(jìn)行分析,從特殊值的規(guī)律上總結(jié)出一般性的規(guī)律.14、【解析】
連接OA,所以∠OAC=90°,因?yàn)锳B=AC,所以∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度數(shù),在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【詳解】連接OA,由題意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案為.【點(diǎn)睛】本題主要考查了圓周角定理,角的轉(zhuǎn)換,以及在直角三角形中的三角函數(shù)的運(yùn)用,解本題的要點(diǎn)在于求出OA的值,從而利用直角三角形的三角函數(shù)的運(yùn)用求出答案.15、【解析】分析:直接利用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)即可.詳解:==.故答案為.點(diǎn)睛:本題主要考查了分母有理化,正確掌握二次根式的性質(zhì)是解題的關(guān)鍵.16、35【解析】試題分析:如圖:∵△ABC是等邊三角形,∴∠ABC=60°,又∵直線l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考點(diǎn):1.平行線的性質(zhì);2.等邊三角形的性質(zhì).17、44°【解析】
首先連接OB,由點(diǎn)C在過點(diǎn)B的切線上,且OC⊥OA,根據(jù)等角的余角相等,易證得∠CBP=∠CPB,利用等腰三角形的性質(zhì)解答即可.【詳解】連接OB,∵BC是⊙O的切線,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案為44°【點(diǎn)睛】此題考查了切線的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.18、1【解析】
∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、-1【解析】
直接利用二次根式的性質(zhì)以及特殊角的三角函數(shù)值、絕對(duì)值的性質(zhì)分別化簡(jiǎn)得出答案.【詳解】解:原式===﹣1.【點(diǎn)睛】此題主要考查了實(shí)數(shù)運(yùn)算以及特殊角的三角函數(shù)值,正確化簡(jiǎn)各數(shù)是解題關(guān)鍵.20、(1)①k=5;②見解析,由此AO交雙曲線于點(diǎn)C,延長(zhǎng)BO交雙曲線于點(diǎn)D,線段CD即為所求;(2)①;②0<a<1或a>5【解析】
(1)①求出直線的解析式,利用待定系數(shù)法即可解決問題;②如圖,由此AO交雙曲線于點(diǎn)C,延長(zhǎng)BO交雙曲線于點(diǎn)D,線段CD即為所求;(2)①求出A,B兩點(diǎn)坐標(biāo),利用待定系數(shù)法即可解決問題;②分兩種情形求出△PAC的面積=24時(shí)a的值,即可判斷.【詳解】(1)①∵,,∴直線的解析式為,∵點(diǎn)B在直線上,縱坐標(biāo)為,∴,解得x=2∴,∴;②如下圖,由此AO交雙曲線于點(diǎn)C,延長(zhǎng)BO交雙曲線于點(diǎn)D,線段CD即為所求;(2)①∵點(diǎn)在上,∴k=5,∵四邊形ABCD是矩形,∴OA=OB=OC=OD,∴A,B關(guān)于直線y=x對(duì)稱,∴,則有:,解得;②如下圖,當(dāng)點(diǎn)P在點(diǎn)A的右側(cè)時(shí),作點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)C′,連接AC,AC′,PC,PC′,PA.∵A,C關(guān)于原點(diǎn)對(duì)稱,,∴,∵,當(dāng)時(shí),∴,∴,∴a=5或(舍棄),當(dāng)點(diǎn)P在點(diǎn)A的左側(cè)時(shí),同法可得a=1,∴滿足條件的a的范圍為或.【點(diǎn)睛】本題屬于反比例函數(shù)與一次函數(shù)的綜合問題,熟練掌握待定系數(shù)法解函數(shù)解析式以及交點(diǎn)坐標(biāo)的求法是解決本題的關(guān)鍵.21、(1)證明見試題解析;(2)90°.【解析】試題分析:(1)由兩邊對(duì)應(yīng)成比例且夾角相等的兩個(gè)三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據(jù)相似三角形的對(duì)應(yīng)角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.試題解析:(1)∵CD是邊AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考點(diǎn):相似三角形的判定與性質(zhì).22、(1)本班有4名同學(xué)優(yōu)秀;(2)補(bǔ)圖見解析;(3)1500人.【解析】
(1)根據(jù)統(tǒng)計(jì)圖即可得出結(jié)論;(2)先計(jì)算出優(yōu)秀的學(xué)生,再補(bǔ)齊統(tǒng)計(jì)圖即可;(3)根據(jù)圖2的數(shù)值計(jì)算即可得出結(jié)論.【詳解】(1)本班有學(xué)生:20÷50%=40(名),本班優(yōu)秀的學(xué)生有:40﹣40×30%﹣20﹣4=4(名),答:本班有4名同學(xué)優(yōu)秀;(2)成績(jī)一般的學(xué)生有:40×30%=12(名),成績(jī)優(yōu)秀的有4名同學(xué),補(bǔ)全的條形統(tǒng)計(jì)圖,如圖所示;(3)3000×50%=1500(名),答:該校3000人有1500人成績(jī)良好.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖,解題的關(guān)鍵是熟練的掌握條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖的知識(shí)點(diǎn).23、(1)反比例函數(shù)解析式為y=;(2)點(diǎn)B的坐標(biāo)為(9,3);(3)△OAP的面積=1.【解析】
(1)將點(diǎn)A的坐標(biāo)代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x軸即可得點(diǎn)B的坐標(biāo);(3)先根據(jù)點(diǎn)B坐標(biāo)得出OB所在直線解析式,從而求得直線與雙曲線交點(diǎn)P的坐標(biāo),再利用割補(bǔ)法求解可得.【詳解】(1)將點(diǎn)A(4,3)代入y=,得:k=12,則反比例函數(shù)解析式為y=;(2)如圖,過點(diǎn)A作AC⊥x軸于點(diǎn)C,則OC=4、AC=3,∴OA==1,∵AB∥x軸,且AB=OA=1,∴點(diǎn)B的坐標(biāo)為(9,3);(3)∵點(diǎn)B坐標(biāo)為(9,3),∴OB所在直線解析式為y=x,由可得點(diǎn)P坐標(biāo)為(6,2),(負(fù)值舍去),過點(diǎn)P作PD⊥x軸,延長(zhǎng)DP交AB于點(diǎn)E,則點(diǎn)E坐標(biāo)為(6,3),∴AE=2、PE=1、PD=2,則△OAP的面積=×(2+6)×3﹣×6×2﹣×2×1=1.【點(diǎn)睛】本題考查了反比例函數(shù)與幾何圖形綜合,熟練掌握反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、正確添加輔助線是解題的關(guān)鍵.24、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解析】
(1)直接利用銳角三角函數(shù)關(guān)系得出cos∠FHE=,進(jìn)而得出答案;(2)延長(zhǎng)FE交CB的延長(zhǎng)線于M,過A作AG⊥FM于G,解直角三角形即可得到結(jié)論.【詳解】(1)由題意可得:cos∠FHE=,則∠FHE=60°;(2)延長(zhǎng)FE交CB的延長(zhǎng)線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:籃板頂端F到地面的距離是4.4米.【點(diǎn)睛】本題考查解直角三角形、銳角三角函數(shù)、解題的關(guān)鍵是添加輔助線,構(gòu)造直角三角形,記住銳角三角函數(shù)的定義.25、證明見解析【解析】試題分析:由AB=AD,CB=CD結(jié)合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專項(xiàng)消防設(shè)備增設(shè)協(xié)議樣本版A版
- 2025年度廠房裝飾裝修工程節(jié)能合同范本4篇
- 2025年度創(chuàng)新產(chǎn)業(yè)園廠房轉(zhuǎn)租服務(wù)合同標(biāo)準(zhǔn)4篇
- 做菜知識(shí)培訓(xùn)課件圖片
- 二零二五年度體育場(chǎng)館建設(shè)擔(dān)保協(xié)議3篇
- 2025年度高原地區(qū)柴油發(fā)電機(jī)組銷售及售后服務(wù)合同3篇
- 《社區(qū)調(diào)解實(shí)務(wù)講解》課件
- 2024年04月河南鄭州銀行信息科技部社會(huì)招考筆試歷年參考題庫(kù)附帶答案詳解
- 個(gè)人對(duì)公司長(zhǎng)期借款合同(2024年版)
- 專業(yè)美甲技術(shù)勞務(wù)合作協(xié)議樣本(2024版)版B版
- 2024年紀(jì)檢監(jiān)察綜合業(yè)務(wù)知識(shí)題庫(kù)含答案(研優(yōu)卷)
- 科室醫(yī)療質(zhì)量與安全管理小組工作制度
- 中華民族共同體概論課件第五講大一統(tǒng)與中華民族共同體初步形成(秦漢時(shí)期)
- 初二生地會(huì)考試卷及答案-文檔
- 私營(yíng)企業(yè)廉潔培訓(xùn)課件
- 施工單位值班人員安全交底和要求
- 中國(guó)保險(xiǎn)用戶需求趨勢(shì)洞察報(bào)告
- 數(shù)字化轉(zhuǎn)型指南 星展銀行如何成為“全球最佳銀行”
- 中餐烹飪技法大全
- 靈芝孢子油減毒作用課件
- 現(xiàn)場(chǎng)工藝紀(jì)律檢查表
評(píng)論
0/150
提交評(píng)論