版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.若點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,則m+n的值是()A.﹣5B.﹣3C.3D.12.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.3.如圖,有一塊含有30°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠2=44°,那么∠1的度數是()A.14°B.15°C.16°D.17°4.以x為自變量的二次函數y=x2﹣2(b﹣2)x+b2﹣1的圖象不經過第三象限,則實數b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤25.已知不透明的袋中只裝有黑、白兩種球,這些球除顏色外都相同,其中白球有30個,黑球有n個.隨機地從袋中摸出一個球,記錄下顏色后,放回袋子中并搖勻,再從中摸出一個球,經過如此大量重復試驗,發(fā)現摸出的黑球的頻率穩(wěn)定在0.4附近,則n的值約為()A.20 B.30 C.40 D.506.在銀行存款準備金不變的情況下,銀行的可貸款總量與存款準備金率成反比例關系.當存款準備金率為7.5%時,某銀行可貸款總量為400億元,如果存款準備金率上調到8%時,該銀行可貸款總量將減少多少億()A.20 B.25 C.30 D.357.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.8.方程有兩個實數根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<19.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.10.現有三張背面完全相同的卡片,正面分別標有數字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數字之和為正數的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知點M(1,2)在反比例函數y=k12.如圖,學校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知DE⊥EA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.13.把拋物線y=x2﹣2x+3沿x軸向右平移2個單位,得到的拋物線解析式為.14.如圖,在正六邊形ABCDEF的上方作正方形AFGH,聯結GC,那么的正切值為___.15.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,則∠CDA=°.16.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE=_____°.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.若∠ABC=70°,則∠NMA的度數是度.若AB=8cm,△MBC的周長是14cm.①求BC的長度;②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.18.(8分)我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了如圖兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有______人,扇形統計圖中“了解”部分所對應扇形的圓心角為______°.(2)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為_______人.(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.19.(8分)先化簡,再求值:,其中x=,y=.20.(8分)如圖,在梯形中,,,,,點為邊上一動點,作⊥,垂足在邊上,以點為圓心,為半徑畫圓,交射線于點.(1)當圓過點時,求圓的半徑;(2)分別聯結和,當時,以點為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點,試通過計算說明線段和的比值為定值,并求出次定值.21.(8分)閱讀材料:已知點和直線,則點P到直線的距離d可用公式計算.例如:求點到直線的距離.
解:因為直線可變形為,其中,所以點到直線的距離為:.根據以上材料,求:點到直線的距離,并說明點P與直線的位置關系;已知直線與平行,求這兩條直線的距離.22.(10分)爸爸和小芳駕車去郊外登山,欣賞美麗的達子香(興安杜鵑),到了山下,爸爸讓小芳先出發(fā)6min,然后他再追趕,待爸爸出發(fā)24min時,媽媽來電話,有急事,要求立即回去.于是爸爸和小芳馬上按原路下山返回(中間接電話所用時間不計),二人返回山下的時間相差4min,假設小芳和爸爸各自上、下山的速度是均勻的,登山過程中小芳和爸爸之間的距離s(單位:m)關于小芳出發(fā)時間t(單位:min)的函數圖象如圖,請結合圖象信息解答下列問題:(1)小芳和爸爸上山時的速度各是多少?(2)求出爸爸下山時CD段的函數解析式;(3)因山勢特點所致,二人相距超過120m就互相看不見,求二人互相看不見的時間有多少分鐘?23.(12分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結果保留整數)(參考數據:sin35°=0.57,cos35°=0.82,tan35°=0.70)24.化簡:
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】【分析】根據關于y軸的對稱點的坐標特點:橫坐標互為相反數,縱坐標不變,據此求出m、n的值,代入計算可得.【詳解】∵點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故選D.【點睛】本題考查了關于y軸對稱的點,熟練掌握關于y軸對稱的兩點的橫坐標互為相反數,縱坐標不變是解題的關鍵.2、B【解析】
找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應表現在主視圖中.【詳解】解:從正面看該幾何體,有3列正方形,分別有:2個,2個,2個,如圖.故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎題型.3、C【解析】
依據∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根據BE∥CD,即可得出∠1=∠EBC=16°.【詳解】如圖,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故選:C.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,內錯角相等.4、A【解析】∵二次函數y=x2-2(b-2)x+b2-1的圖象不經過第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點的橫坐標均大于等于0.當Δ≤0時,[-2(b-2)]2-4(b2-1)≤0,解得b≥.當拋物線與x軸的交點的橫坐標均大于等于0時,設拋物線與x軸的交點的橫坐標分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無解,∴此種情況不存在.∴b≥.5、A【解析】分析:根據白球的頻率穩(wěn)定在0.4附近得到白球的概率約為0.4,根據白球個數確定出總個數,進而確定出黑球個數n.詳解:根據題意得:,
計算得出:n=20,
故選A.
點睛:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發(fā)生的概率.6、B【解析】設可貸款總量為y,存款準備金率為x,比例常數為k,則由題意可得:,,∴,∴當時,(億),∵400-375=25,∴該行可貸款總量減少了25億.故選B.7、A【解析】試題分析:根據軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形8、D【解析】當k=1時,原方程不成立,故k≠1,當k≠1時,方程為一元二次方程.∵此方程有兩個實數根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.9、D【解析】
過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.10、D【解析】
先找出全部兩張卡片正面數字之和情況的總數,再先找出全部兩張卡片正面數字之和為正數情況的總數,兩者的比值即為所求概率.【詳解】任取兩張卡片,數字之和一共有﹣3、2、1三種情況,其中和為正數的有2、1兩種情況,所以這兩張卡片正面數字之和為正數的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、-2【解析】k==1×(-2)=-212、1【解析】
先根據CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數的定義即可得出結論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,熟記銳角三角函數的定義是解答此題的關鍵.13、y=(x﹣3)2+2【解析】
根據題意易得新拋物線的頂點,根據頂點式及平移前后二次項的系數不變可得新拋物線的解析式.【詳解】解:y=x2﹣2x+3=(x﹣1)2+2,其頂點坐標為(1,2).向右平移2個單位長度后的頂點坐標為(3,2),得到的拋物線的解析式是y=(x﹣3)2+2,故答案為:y=(x﹣3)2+2.【點睛】此題主要考查了次函數圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.14、【解析】
延長GF與CD交于點D,過點E作交DF于點M,設正方形的邊長為,則解直角三角形可得,根據正切的定義即可求得的正切值【詳解】延長GF與CD交于點D,過點E作交DF于點M,設正方形的邊長為,則,故答案為:【點睛】考查正多邊形的性質,銳角三角函數,構造直角三角形是解題的關鍵.15、1.【解析】
連接OD,根據圓的切線定理和等腰三角形的性質可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點:切線的性質.16、1【解析】
根據△ABC中DE垂直平分AC,可求出AE=CE,再根據等腰三角形的性質求出∠ACE=∠A=30°,再根據∠ACB=80°即可解答.【詳解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案為:1.三、解答題(共8題,共72分)17、(1)50;(2)①6;②1【解析】試題分析:(1)根據等腰三角形的性質和線段垂直平分線的性質即可得到結論;(2)①根據線段垂直平分線上的點到線段兩端點的距離相等的性質可得AM=BM,然后求出△MBC的周長=AC+BC,再代入數據進行計算即可得解;②當點P與M重合時,△PBC周長的值最小,于是得到結論.試題解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分線交AB于點N,∴∠ANM=90°,∴∠NMA=50°.故答案為50;(2)①∵MN是AB的垂直平分線,∴AM=BM,∴△MBC的周長=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周長是1,∴BC=1﹣8=6;②當點P與M重合時,△PBC周長的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P與M重合時,PA+PC=AC,此時PB+PC最小,∴△PBC周長的最小值=AC+BC=8+6=1.18、(1)60,30;;(2)300;(3)【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數,繼而求得扇形統計圖中“了解”部分所對應扇形的圓心角;(2)利用樣本估計總體的方法,即可求得答案;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與恰好抽到女生A的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);∵了解部分的人數為60﹣(15+30+10)=5,∴扇形統計圖中“了解”部分所對應扇形的圓心角為:×360°=30°;故答案為60,30;(2)根據題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為300人,故答案為300;(3)畫樹狀圖如下:所有等可能的情況有6種,其中抽到女生A的情況有2種,所以P(抽到女生A)==.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統計圖與扇形統計圖.用到的知識點為:概率=所求情況數與總情況數之比.19、x+y,.【解析】試題分析:根據分式的減法和除法可以化簡題目中的式子,然后將x、y的值代入即可解答本題.試題解析:原式===x+y,當x=,y==2時,原式=﹣2+2=.20、(1)x=1(2)(1)【解析】
(1)作AM⊥BC、連接AP,由等腰梯形性質知BM=4、AM=1,據此知tanB=tanC=,從而可設PH=1k,則CH=4k、PC=5k,再表示出PA的長,根據PA=PH建立關于k的方程,解之可得;(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9?8k,由△ABE∽△CEH得,據此求得k的值,從而得出圓P的半徑,再根據兩圓間的位置關系求解可得;(1)在圓P上取點F關于EH的對稱點G,連接EG,作PQ⊥EG、HN⊥BC,先證△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC=、cosC=,據此得出NC=k、HN=k及PN=PC?NC=k,繼而表示出EF、EH的長,從而出答案.【詳解】(1)作AM⊥BC于點M,連接AP,如圖1,∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,∴BM=4、AM=1,∴tanB=tanC=,∵PH⊥DC,∴設PH=1k,則CH=4k、PC=5k,∵BC=9,∴PM=BC?BM?PC=5?5k,∴AP=AM+PM=9+(5?5k),∵PA=PH,∴9+(5?5k)=9k,解得:k=1或k=,當k=時,CP=5k=>9,舍去;∴k=1,則圓P的半徑為1.(2)如圖2,由(1)知,PH=PE=1k、CH=4k、PC=5k,∵BC=9,∴BE=BC?PE?PC=9?8k,∵△ABE∽△CEH,∴,即,解得:k=,則PH=,即圓P的半徑為,∵圓B與圓P相交,且BE=9?8k=,∴<r<;(1)在圓P上取點F關于EH的對稱點G,連接EG,作PQ⊥EG于G,HN⊥BC于N,則EG=EF、∠1=∠1、EQ=QG、EF=EG=2EQ,∴∠GEP=2∠1,∵PE=PH,∴∠1=∠2,∴∠4=∠1+∠2=2∠1,∴∠GEP=∠4,∴△EPQ≌△PHN,∴EQ=PN,由(1)知PH=1k、HC=4k、PC=5k,∴sinC=、cosC=,∴NC=k、HN=k,∴PN=PC?NC=k,∴EF=EG=2EQ=2PN=k,EH=,∴,故線段EH和EF的比值為定值.【點睛】此題考查全等三角形的性質,相似三角形的性質,解直角三角形,勾股定理,解題關鍵在于作輔助線.21、(1)點P在直線上,說明見解析;(2).【解析】
解:(1)求:(1)直線可變?yōu)椋f明點P在直線上;(2)在直線上取一點(0,1),直線可變?yōu)閯t,∴這兩條平行線的距離為.22、(1)小芳上山的速度為20m/min,爸爸上山的速度為28m/min;(2)爸爸下山時CD段的函數解析式為y=12x﹣288(24≤x≤40);(3)二人互相看不見的時間有7.1分鐘.【解析】分析:(1)根據速度=路程÷時間可求出小芳上山的速度;根據速度=路程÷時間+小芳的速度可求出爸爸上山的速度;
(2)根據爸爸及小芳的速度結合點C的橫坐標(6+24=30),可得出點C的坐標,由點D的橫坐標比點E少4可得出點D的坐標,再根據點C、D的坐標利用待定系數法可求出CD段的函數解析式;
(3)根據點D、E的坐標利用待定系數法可求出DE段的函數解析式,分別求出CD、DE段縱坐標大于120時x的取值范圍,結合兩個時間段即可求出結論.詳解:(1)小芳上山的速度為120÷6=20(m/min),爸爸上山的速度為120÷(21﹣6)+20=28(m/min).答:小芳上山的速度為20m/min,爸爸上山的速度為28m/min.(2)∵(28﹣20)×(24+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論