江蘇省昆山、太倉市2023年中考數(shù)學四模試卷含解析及點睛_第1頁
江蘇省昆山、太倉市2023年中考數(shù)學四模試卷含解析及點睛_第2頁
江蘇省昆山、太倉市2023年中考數(shù)學四模試卷含解析及點睛_第3頁
江蘇省昆山、太倉市2023年中考數(shù)學四模試卷含解析及點睛_第4頁
江蘇省昆山、太倉市2023年中考數(shù)學四模試卷含解析及點睛_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.將拋物線向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為()A. B. C. D.2.點A(4,3)經(jīng)過某種圖形變化后得到點B(-3,4),這種圖形變化可以是()A.關于x軸對稱 B.關于y軸對稱C.繞原點逆時針旋轉 D.繞原點順時針旋轉3.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側面(不浪費材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm4.如果(,均為非零向量),那么下列結論錯誤的是()A.// B.-2=0 C.= D.5.為確保信息安全,信息需加密傳輸,發(fā)送方將明文加密后傳輸給接收方,接收方收到密文后解密還原為明文,已知某種加密規(guī)則為,明文a,b對應的密文為a+2b,2a-b,例如:明文1,2對應的密文是5,0,當接收方收到的密文是1,7時,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,36.下列各數(shù)3.1415926,,,,,中,無理數(shù)有()A.2個 B.3個 C.4個 D.5個7.某單位組織職工開展植樹活動,植樹量與人數(shù)之間關系如圖,下列說法不正確的是()A.參加本次植樹活動共有30人 B.每人植樹量的眾數(shù)是4棵C.每人植樹量的中位數(shù)是5棵 D.每人植樹量的平均數(shù)是5棵8.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=9.如圖,點A是反比例函數(shù)y=的圖象上的一點,過點A作AB⊥x軸,垂足為B.點C為y軸上的一點,連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣610.如圖,在平面直角坐標系中,正方形的頂點在軸上,且,,則正方形的面積是()A. B. C. D.11.﹣2018的絕對值是()A.±2018 B.﹣2018 C.﹣ D.201812.若一次函數(shù)y=(2m﹣3)x﹣1+m的圖象不經(jīng)過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.14.閱讀材料:設=(x1,y1),=(x2,y2),如果∥,則x1?y2=x2?y1.根據(jù)該材料填空:已知=(2,3),=(4,m),且∥,則m=_____.15.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.16.已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45o.則圖中陰影部分的面積是____________.17.某廣場要做一個由若干盆花組成的形如正六邊形的花壇,每條邊(包括兩個頂點)有n(n>1)盆花,設這個花壇邊上的花盆的總數(shù)為S,請觀察圖中的規(guī)律:按上規(guī)律推斷,S與n的關系是________________________________.18.關于的一元二次方程有兩個不相等的實數(shù)根,請你寫出一個滿足條件的值__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?20.(6分)計算:解方程:21.(6分)如圖,拋物線y=x2+bx+c與x軸交于點A(﹣1,0),B(4,0)與y軸交于點C,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線1,交拋物線與點Q.求拋物線的解析式;當點P在線段OB上運動時,直線1交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;在點P運動的過程中,坐標平面內是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.22.(8分)先化簡,再求代數(shù)式()÷的值,其中x=sin60°,y=tan30°.23.(8分)如圖,已知,.求證.24.(10分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經(jīng)過點B的直線交y軸于點E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結AC,將△AOC繞點O逆時針方向旋轉,記旋轉中的三角形為△A′OC′,在旋轉過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.25.(10分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點坐標;已知二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1).①求a的值;②點B在二次函數(shù)C1的圖象上,點A,B關于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,求k的取值范圍.26.(12分)列方程解應用題:某地2016年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2018年在2016年的基礎上增加投入資金1600萬元.從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?27.(12分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點,過點D作⊙O的切線,分別交AC、AB的延長線于點E和點F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】根據(jù)“左加右減、上加下減”的原則,將拋物線向左平移1個單位所得直線解析式為:;再向下平移3個單位為:.故選D.2、C【解析】分析:根據(jù)旋轉的定義得到即可.詳解:因為點A(4,3)經(jīng)過某種圖形變化后得到點B(-3,4),所以點A繞原點逆時針旋轉90°得到點B,故選C.點睛:本題考查了旋轉的性質:旋轉前后兩個圖形全等,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線段的夾角等于旋轉角.3、A【解析】

根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案?!驹斀狻恐睆绞堑膱A形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設每個圓錐容器的地面半徑為解得故答案選A.【點睛】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。4、B【解析】試題解析:向量最后的差應該還是向量.故錯誤.故選B.5、A【解析】

根據(jù)題意可得方程組,再解方程組即可.【詳解】由題意得:,解得:,故選A.6、B【解析】

根據(jù)無理數(shù)的定義即可判定求解.【詳解】在3.1415926,,,,,中,,3.1415926,是有理數(shù),,,是無理數(shù),共有3個,故選:B.【點睛】本題主要考查了無理數(shù)的定義,其中初中范圍內學習的無理數(shù)有:等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).7、D【解析】試題解析:A、∵4+10+8+6+2=30(人),∴參加本次植樹活動共有30人,結論A正確;B、∵10>8>6>4>2,∴每人植樹量的眾數(shù)是4棵,結論B正確;C、∵共有30個數(shù),第15、16個數(shù)為5,∴每人植樹量的中位數(shù)是5棵,結論C正確;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植樹量的平均數(shù)約是4.73棵,結論D不正確.故選D.考點:1.條形統(tǒng)計圖;2.加權平均數(shù);3.中位數(shù);4.眾數(shù).8、D【解析】【分析】直接利用根與系數(shù)的關系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數(shù)的性質得到x1、x2異號,且負數(shù)的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【詳解】根據(jù)題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數(shù)的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【點睛】本題考查了一元二次方程的解、一元二次方程根與系數(shù)的關系,熟練掌握相關內容是解題的關鍵.9、D【解析】試題分析:連結OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點:反比例函數(shù)系數(shù)k的幾何意義.10、D【解析】作BE⊥OA于點E.則AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,,∴正方形的面積是:,故選D.11、D【解析】分析:根據(jù)絕對值的定義解答即可,數(shù)軸上,表示一個數(shù)a的點到原點的距離叫做這個數(shù)的絕對值.詳解:﹣2018的絕對值是2018,即.故選D.點睛:本題考查了絕對值的定義,熟練掌握絕對值的定義是解答本題的關鍵,正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.12、B【解析】

根據(jù)一次函數(shù)的性質,根據(jù)不等式組即可解決問題;【詳解】∵一次函數(shù)y=(2m-3)x-1+m的圖象不經(jīng)過第三象限,∴,解得1≤m<.故選:B.【點睛】本題考查一次函數(shù)的圖象與系數(shù)的關系等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考常考題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4m【解析】

設路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對應邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因為兩人相距4.7m,可得到關于x的一元一次方程,然后求解方程即可.【詳解】設路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.14、6【解析】根據(jù)題意得,2m=3×4,解得m=6,故答案為6.15、1【解析】原方程為3x2?6x+1=0,二次項系數(shù)化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.16、(-)cm2【解析】S陰影=S扇形-S△OBD=52-×5×5=.故答案是:.17、S=1n-1【解析】觀察可得,n=2時,S=1;

n=3時,S=1+(3-2)×1=12;

n=4時,S=1+(4-2)×1=18;

…;

所以,S與n的關系是:S=1+(n-2)×1=1n-1.

故答案為S=1n-1.【點睛】本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.18、1【解析】

先根據(jù)根的判別式求出c的取值范圍,然后在范圍內隨便取一個值即可.【詳解】解得所以可以取故答案為:1.【點睛】本題主要考查根的判別式,掌握根的判別式與根個數(shù)的關系是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)超市每天至少銷售粽子440盒.【解析】試題分析:(1)根據(jù)“當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;(2)根據(jù)利潤=1盒粽子所獲得的利潤×銷售量列式整理,再根據(jù)二次函數(shù)的最值問題解答;(3)先由(2)中所求得的P與x的函數(shù)關系式,根據(jù)這種粽子的每盒售價不得高于58元,且每天銷售粽子的利潤不低于6000元,求出x的取值范圍,再根據(jù)(1)中所求得的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式即可求解.試題解析:(1)由題意得,==;(2)P===,∵x≥45,a=﹣20<0,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)由題意,得=6000,解得,,∵拋物線P=的開口向下,∴當50≤x≤70時,每天銷售粽子的利潤不低于6000元的利潤,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y隨x的增大而減小,∴當x=58時,y最小值=﹣20×58+1600=440,即超市每天至少銷售粽子440盒.考點:二次函數(shù)的應用.20、(1)10;(2)原方程無解.【解析】

(1)原式利用二次根式性質,零指數(shù)冪、負整數(shù)指數(shù)冪法則,以及特殊角的三角函數(shù)值計算即可求出值;(2)分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】(1)原式==10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,經(jīng)檢驗:x=2是增根,原方程無解.【點睛】此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.21、(1);(2)當m=2時,四邊形CQMD為平行四邊形;(3)Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)【解析】

(1)直接將A(-1,0),B(4,0)代入拋物線y=x2+bx+c方程即可;

(2)由(1)中的解析式得出點C的坐標C(0,-2),從而得出點D(0,2),求出直線BD:y=?x+2,設點M(m,?m+2),Q(m,m2?m?2),可得MQ=?m2+m+4,根據(jù)平行四邊形的性質可得QM=CD=4,即?m2+m+4=4可解得m=2;

(3)由Q是以BD為直角邊的直角三角形,所以分兩種情況討論,①當∠BDQ=90°時,則BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②當∠DBQ=90°時,則BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2).【詳解】(1)由題意知,∵點A(﹣1,0),B(4,0)在拋物線y=x2+bx+c上,∴解得:∴所求拋物線的解析式為(2)由(1)知拋物線的解析式為,令x=0,得y=﹣2∴點C的坐標為C(0,﹣2)∵點D與點C關于x軸對稱∴點D的坐標為D(0,2)設直線BD的解析式為:y=kx+2且B(4,0)∴0=4k+2,解得:∴直線BD的解析式為:∵點P的坐標為(m,0),過點P作x軸的垂線1,交BD于點M,交拋物線與點Q∴可設點M,Q∴MQ=∵四邊形CQMD是平行四邊形∴QM=CD=4,即=4解得:m1=2,m2=0(舍去)∴當m=2時,四邊形CQMD為平行四邊形(3)由題意,可設點Q且B(4,0)、D(0,2)∴BQ2=DQ2=BD2=20①當∠BDQ=90°時,則BD2+DQ2=BQ2,∴解得:m1=8,m2=﹣1,此時Q1(8,18),Q2(﹣1,0)②當∠DBQ=90°時,則BD2+BQ2=DQ2,∴解得:m3=3,m4=4,(舍去)此時Q3(3,﹣2)∴滿足條件的點Q的坐標有三個,分別為:Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2).【點睛】此題考查了待定系數(shù)法求解析式,還考查了平行四邊形及直角三角形的定義,要注意第3問分兩種情形求解.22、【解析】

先根據(jù)分式混合運算的法則把原式進行化簡,再計算x和y的值并代入進行計算即可【詳解】原式∴原式【點睛】考查分式的混合運算,掌握運算順序是解題的關鍵.23、見解析【解析】

根據(jù)∠ABD=∠DCA,∠ACB=∠DBC,求證∠ABC=∠DCB,然后利用AAS可證明△ABC≌△DCB,即可證明結論.【詳解】證明:∵∠ABD=∠DCA,∠DBC=∠ACB

∴∠ABD+∠DBC=∠DCA+∠ACB

即∠ABC=∠DCB

在△ABC和△DCB中

∴△ABC≌△DCB(ASA)

∴AB=DC【點睛】本題主要考查學生對全等三角形的判定與性質的理解和掌握,證明此題的關鍵是求證△ABC≌△DCB.難度不大,屬于基礎題.24、(1)y=x2﹣x﹣2;(2)9;(3)Q坐標為(﹣)或(4﹣)或(2,1)或(4+,﹣).【解析】試題分析:把點代入拋物線,求出的值即可.先用待定系數(shù)法求出直線BE的解析式,進而求得直線AD的解析式,設則表示出,用配方法求出它的最大值,聯(lián)立方程求出點的坐標,最大值=,進而計算四邊形EAPD面積的最大值;分兩種情況進行討論即可.試題解析:(1)∵在拋物線上,∴解得∴拋物線的解析式為(2)過點P作軸交AD于點G,∵∴直線BE的解析式為∵AD∥BE,設直線AD的解析式為代入,可得∴直線AD的解析式為設則則∴當x=1時,PG的值最大,最大值為2,由解得或∴∴最大值=∵AD∥BE,∴∴S四邊形APDE最大=S△ADP最大+(3)①如圖3﹣1中,當時,作于T.∵∴∴∴可得②如圖3﹣2中,當時,當時,當時,Q3綜上所述,滿足條件點點Q坐標為或或或25、(1)y1=a(x+1)2﹣1,頂點為(﹣1,﹣1);(2)①;②k的取值范圍是≤k≤或k=﹣1.【解析】

(1)化成頂點式即可求得;(2)①把點A(﹣3,1)代入二次函數(shù)C1:y1=ax2+2ax+a﹣1即可求得a的值;②根據(jù)對稱的性質得出B的坐標,然后分兩種情況討論即可求得;【詳解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴頂點為(﹣1,﹣1);(2)①∵二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=;②∵A(﹣3,1),對稱軸為直線x=﹣1,∴B(1,1),當k>0時,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過A(﹣3,1)時,1=9k﹣3k,解得k=,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過B(1,1)時,1=k+k,解得k=,∴≤k≤,當k<0時,∵二次函數(shù)C2:y2=kx2+kx=k(x+)2﹣k,∴﹣k=1,∴k=﹣1,綜上,二次函數(shù)C2:y2=kx2+kx(k≠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論