版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個多邊形的每一個外角都等于72°,這個多邊形是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形2.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.3.下列運算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣14.已知代數(shù)式x+2y的值是5,則代數(shù)式2x+4y+1的值是()A.6
B.7C.11D.125.下列計算或化簡正確的是()A. B.C. D.6.一、單選題在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.7.如果菱形的一邊長是8,那么它的周長是()A.16 B.32 C.163 D.3238.已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或69.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算10.如圖,若銳角△ABC內(nèi)接于⊙O,點D在⊙O外(與點C在AB同側(cè)),則∠C與∠D的大小關(guān)系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定二、填空題(共7小題,每小題3分,滿分21分)11.不等式組的解集是__________.12.如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結(jié)果保留根號).13.若關(guān)于x的二次函數(shù)y=ax2+a2的最小值為4,則a的值為______.14.如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設AE,BF交于點G,連接DG,則DG的最小值為_______.15.如圖,在反比例函數(shù)y=(x>0)的圖象上,有點P1,P2,P3,P4,…,它們的橫坐標依次為2,4,6,8,…分別過這些點作x軸與y軸的垂線,圖中所構(gòu)成的陰影部分的面積從左到右依次記為S1,S2,S3,…,Sn,則S1+S2+S3+…+Sn=_____(用含n的代數(shù)式表示)16.⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,且AB∥CD,AB=16cm,CD=12cm.則AB與CD之間的距離是cm.17.如圖,在△ABC中,∠C=90°,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為________.三、解答題(共7小題,滿分69分)18.(10分)某數(shù)學教師為了解所教班級學生完成數(shù)學課前預習的具體情況,對該班部分學生進行了一學期的跟蹤調(diào)查,將調(diào)查結(jié)果分為四類并給出相應分數(shù),A:很好,95分;B:較好75分;C:一般,60分;D:較差,30分.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:(Ⅰ)該教師調(diào)查的總?cè)藬?shù)為,圖②中的m值為;(Ⅱ)求樣本中分數(shù)值的平均數(shù)、眾數(shù)和中位數(shù).19.(5分)已知,,,斜邊,將繞點順時針旋轉(zhuǎn),如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發(fā),在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設運動時間為秒,的面積為,求當為何值時取得最大值?最大值為多少?20.(8分)如圖,直線l是線段MN的垂直平分線,交線段MN于點O,在MN下方的直線l上取一點P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點C,連接BC.(1)設∠ONP=α,求∠AMN的度數(shù);(2)寫出線段AM、BC之間的等量關(guān)系,并證明.21.(10分)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.求反比例函數(shù)的解析式;若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.22.(10分)如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.(1)求證:∠D=2∠A;(2)若HB=2,cosD=,請求出AC的長.23.(12分)如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.求斜坡CD的高度DE;求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).24.(14分)十八大報告首次提出建設生態(tài)文明,建設美麗中國.十九大報告再次明確,到2035年美麗中國目標基本實現(xiàn).森林是人類生存發(fā)展的重要生態(tài)保障,提高森林的數(shù)量和質(zhì)量對生態(tài)文明建設非常關(guān)鍵.截止到2013年,我國已經(jīng)進行了八次森林資源清查,其中全國和北京的森林面積和森林覆蓋率情況如下:表1全國森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)122001150125001340015894.0917490.9219545.2220768.73森林覆蓋率12.7%12%12.98%13.92%16.55%18.21%20.36%21.63%表2北京森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)33.7437.8852.0558.81森林覆蓋率11.2%8.1%12.08%14.99%18.93%21.26%31.72%35.84%(以上數(shù)據(jù)來源于中國林業(yè)網(wǎng))請根據(jù)以上信息解答下列問題:(1)從第次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;(2)補全以下北京森林覆蓋率折線統(tǒng)計圖,并在圖中標明相應數(shù)據(jù);(3)第八次清查的全國森林面積20768.73(萬公頃)記為a,全國森林覆蓋率21.63%記為b,到2018年第九次森林資源清查時,如果全國森林覆蓋率達到27.15%,那么全國森林面積可以達到萬公頃(用含a和b的式子表示).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
任何多邊形的外角和是360°,用360°除以一個外角度數(shù)即可求得多邊形的邊數(shù).【詳解】360°÷72°=1,則多邊形的邊數(shù)是1.故選C.【點睛】本題主要考查了多邊形的外角和定理,已知外角求邊數(shù)的這種方法是需要熟記的內(nèi)容.2、B【解析】
先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.3、D【解析】分析:根據(jù)合并同類項法則,同底數(shù)冪相除,積的乘方的性質(zhì),同底數(shù)冪相乘的性質(zhì),逐一判斷即可.詳解:根據(jù)合并同類項法則,可知x3+x3=2x3,故不正確;根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相加,可知a6÷a2=a4,故不正確;根據(jù)積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,可得x2?x﹣3=x﹣1,故正確.故選D.點睛:此題主要考查了整式的相關(guān)運算,是一道綜合性題目,熟練應用整式的相關(guān)性質(zhì)和運算法則是解題關(guān)鍵.4、C【解析】
根據(jù)題意得出x+2y=5,將所求式子前兩項提取2變形后,把x+2y=5代入計算即可求出值.【詳解】∵x+2y=5,∴2x+4y=10,則2x+4y+1=10+1=1.故選C.【點睛】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.5、D【解析】解:A.不是同類二次根式,不能合并,故A錯誤;B.
,故B錯誤;C.,故C錯誤;D.,正確.故選D.6、B【解析】
根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)常考查的一個知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.7、B【解析】
根據(jù)菱形的四邊相等,可得周長【詳解】菱形的四邊相等∴菱形的周長=4×8=32故選B.【點睛】本題考查了菱形的性質(zhì),并靈活掌握及運用菱形的性質(zhì)8、B【解析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當h<2時,根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論;當2≤h≤5時,由此時函數(shù)的最大值為0與題意不符,可得出該情況不存在;當h>5時,根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論.綜上即可得出結(jié)論.詳解:如圖,當h<2時,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當2≤h≤5時,y=-(x-h)2的最大值為0,不符合題意;當h>5時,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點睛:本題考查了二次函數(shù)的最值以及二次函數(shù)的性質(zhì),分h<2、2≤h≤5和h>5三種情況求出h值是解題的關(guān)鍵.9、B【解析】
有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【詳解】把△IBE繞B順時針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.10、A【解析】
直接利用圓周角定理結(jié)合三角形的外角的性質(zhì)即可得.【詳解】連接BE,如圖所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故選:A.【點睛】考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、x≥1【解析】分析:分別求出兩個不等式的解,從而得出不等式組的解集.詳解:解不等式①可得:x≥1,解不等式②可得:x>-3,∴不等式組的解為x≥1.點睛:本題主要考查的是不等式組的解集,屬于基礎題型.理解不等式的性質(zhì)是解決這個問題的關(guān)鍵.12、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關(guān),而且與時間有關(guān),不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關(guān)鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關(guān)系,從而得出答案.13、1.【解析】
根據(jù)二次函數(shù)的性質(zhì)列出不等式和等式,計算即可.【詳解】解:∵關(guān)于x的二次函數(shù)y=ax1+a1的最小值為4,
∴a1=4,a>0,
解得,a=1,
故答案為1.【點睛】本題考查的是二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.14、﹣1【解析】
先由圖形確定:當O、G、D共線時,DG最??;根據(jù)正方形的性質(zhì)證明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的長,從而得DG的最小值.【詳解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴點G在以AB為直徑的圓上,由圖形可知:當O、G、D在同一直線上時,DG有最小值,如圖所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=?1,故答案為?1.【點睛】本題考查了正方形的性質(zhì)與全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握正方形的性質(zhì)與全等三角形的判定與性質(zhì).15、10﹣【解析】
過點P1、點Pn+1作y軸的垂線段,垂足分別是點A、B,過點P1作x軸的垂線段,垂足是點C,P1C交BPn+1于點D,所有的陰影部分平移到左邊,陰影部分的面積之和就等于矩形P1ABD的面積,即可得到答案.【詳解】如圖,過點P1、點Pn+1作y軸的垂線段,垂足分別是點A、B,過點P1作x軸的垂線段,垂足是點C,P1C交BPn于點D,則點Pn+1的坐標為(2n+2,),則OB=,∵點P1的橫坐標為2,∴點P1的縱坐標為5,∴AB=5﹣,∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,故答案為10﹣.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是掌握過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|.16、2或14【解析】
分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【詳解】①當弦AB和CD在圓心同側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF?OE=2cm;②當弦AB和CD在圓心異側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB與CD之間的距離為14cm或2cm.故答案為:2或14.17、1【解析】
如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據(jù)相似三角形的性質(zhì)就可以求出結(jié)論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1【點睛】本題考查了勾股定理的運用,相似三角形的判定及性質(zhì)的運用,解答時求出△AED∽△ACB是解答本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(Ⅰ)25、40;(Ⅱ)平均數(shù)為68.2分,眾數(shù)為75分,中位數(shù)為75分.【解析】
(1)由直方圖可知A的總?cè)藬?shù)為5,再依據(jù)其所占比例20%可求解總?cè)藬?shù);由直方圖中B的人數(shù)為10及總?cè)藬?shù)可知m的值;(2)根據(jù)平均數(shù)、眾數(shù)和中位數(shù)的定義求解即可.【詳解】(Ⅰ)該教師調(diào)查的總?cè)藬?shù)為(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案為:25、40;(Ⅱ)由條形圖知95分的有5人、75分的有10人、60分的有6人、30分的有4人,則樣本分知的平均數(shù)為(分),眾數(shù)為75分,中位數(shù)為第13個數(shù)據(jù),即75分.【點睛】理解兩幅統(tǒng)計圖中各數(shù)據(jù)的含義及其對應關(guān)系是解題關(guān)鍵.19、(1)1;(2);(3)x時,y有最大值,最大值.【解析】
(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當x≤4時,M在BC上運動,N在OB上運動.③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.【詳解】(1)由旋轉(zhuǎn)性質(zhì)可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時,y有最大值,最大值.②當x≤4時,M在BC上運動,N在OB上運動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當x時,y取最大值,y,③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x,當x=4時,y有最大值,最大值=2.綜上所述:y有最大值,最大值為.【點睛】本題考查幾何變換綜合題、30度的直角三角形的性質(zhì)、等邊三角形的判定和性質(zhì)、三角形的面積等知識,解題的關(guān)鍵是學會用分類討論的思想思考問題.20、(1)45°(2),理由見解析【解析】
(1)由線段的垂直平分線的性質(zhì)可得PM=PN,PO⊥MN,由等腰三角形的性質(zhì)可得∠PMN=∠PNM=α,由正方形的性質(zhì)可得AP=PN,∠APN=90°,可得∠APO=α,由三角形內(nèi)角和定理可求∠AMN的度數(shù);(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得,,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得.【詳解】解:(1)如圖,連接MP,∵直線l是線段MN的垂直平分線,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四邊形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)理由如下:如圖,連接AN,CN,∵直線l是線段MN的垂直平分線,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴,∵四邊形APNB是正方形∴∠ANB=∠BAN=45°∴,∠MNC=∠ANB=45°∴∠ANM=∠BNC又∵∴△CBN∽△MAN∴∴【點睛】本題考查了正方形的性質(zhì),線段垂直平分線的性質(zhì),相似三角形的判定和性質(zhì),添加恰當輔助線構(gòu)造相似三角形是本題的關(guān)鍵.21、(1);(2)點P的坐標是(0,4)或(0,-4).【解析】
(1)求出OA=BC=2,將y=2代入求出x=2,得出M的坐標,把M的坐標代入反比例函數(shù)的解析式即可求出答案.(2)求出四邊形BMON的面積,求出OP的值,即可求出P的坐標.【詳解】(1)∵B(4,2),四邊形OABC是矩形,∴OA=BC=2.將y=2代入3得:x=2,∴M(2,2).把M的坐標代入得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國經(jīng)濟型酒店行業(yè)全國市場開拓戰(zhàn)略制定與實施研究報告
- 新形勢下人力資源服務行業(yè)轉(zhuǎn)型升級戰(zhàn)略制定與實施研究報告
- 2025-2030年中國中醫(yī)藥服務貿(mào)易行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 2025-2030年中國老年護理服務行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國家庭服務機器人行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實施研究報告
- 市政道路工程竣工監(jiān)理質(zhì)量評估報告
- 旅行套裝問卷調(diào)查
- 2025年中國口罩行業(yè)市場調(diào)查研究及投資前景預測報告
- 白皮紙行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 母嬰零食知識培訓課件
- 微型消防站消防員培訓內(nèi)容
- 大一中國近代史綱要期末考試試題及答案
- (完整版)鋼筋加工棚驗算
- 安徽省合肥市廬陽區(qū)2023-2024學年三年級上學期期末數(shù)學試卷
- 概念方案模板
- 西南交大畢業(yè)設計-地鐵車站主體結(jié)構(gòu)設計
- 2024年山東傳媒職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 江蘇省南通市崇川區(qū)2023-2024學年三年級上學期期末語文試卷
- crtd植入術(shù)護理查房
- 掃雪鏟冰安全教育培訓
- 人教版三年級下冊必讀書目《中國古代寓言故事》
評論
0/150
提交評論