第二章 流體運(yùn)動(dòng)_第1頁(yè)
第二章 流體運(yùn)動(dòng)_第2頁(yè)
第二章 流體運(yùn)動(dòng)_第3頁(yè)
第二章 流體運(yùn)動(dòng)_第4頁(yè)
第二章 流體運(yùn)動(dòng)_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第二章流體的運(yùn)動(dòng)流體:包括氣體、液體流體的基本特征:流動(dòng)性,無(wú)固定形狀?理想流體、穩(wěn)定流動(dòng)連續(xù)性方程、伯努利方程??實(shí)際流體粘性、雷諾數(shù)、粘性流體的運(yùn)動(dòng)規(guī)律流體運(yùn)動(dòng)的學(xué)科稱為流體動(dòng)力學(xué)可壓縮,體積隨壓強(qiáng)不同而改變。液體的體積變化小,氣體的體積變化大。都有粘性,很多流體的粘性小,在小范圍流動(dòng)時(shí),粘性造成的影響可以忽略。

理想流體:絕對(duì)不可壓縮、完全沒(méi)有粘滯性2-1理想流體穩(wěn)定流動(dòng)一、理想流體實(shí)際流體二、穩(wěn)定流動(dòng)研究流體運(yùn)動(dòng)的方法有兩種拉格朗日法:將流體分成許多無(wú)窮小的流體質(zhì)元,跟蹤并研究每一個(gè)流體質(zhì)元的運(yùn)動(dòng)情況,求出它們各自的運(yùn)動(dòng)軌跡和流動(dòng)速度。這實(shí)際上是沿用質(zhì)點(diǎn)動(dòng)力學(xué)的方法來(lái)討論流體的運(yùn)動(dòng)。

歐拉法:把注意力集中到各空間點(diǎn),觀察流體質(zhì)元經(jīng)過(guò)每個(gè)空間點(diǎn)的流速、壓強(qiáng)、密度等物理量,尋求它的空間分布隨時(shí)間的演化規(guī)律。在流動(dòng)過(guò)程中的任一瞬時(shí),流體在所占據(jù)的空間每一點(diǎn)都具有一定的流速v(x、y、z、t),,這個(gè)空間稱為流體速度場(chǎng),簡(jiǎn)稱流場(chǎng)。1、流線和流管流速方向:流線上的切線方向大?。号c流線疏密有關(guān),如A、B、C流管:在流體中作一微小的閉合曲線,通過(guò)其上各點(diǎn)的流線所圍成的細(xì)管流線:(與電力線和磁力線相似,假想線)2、穩(wěn)定流動(dòng)流線上任一點(diǎn)速度大小、方向都不隨時(shí)間變化,即流線的形狀保持不變流線即流體質(zhì)元的運(yùn)動(dòng)軌跡3、性質(zhì)(1)流線不能相交(2)在某一流管內(nèi),外面流線不能流進(jìn)來(lái),里面流線不能流出去2-2連續(xù)性方程伯努利方程一、理想流體的連續(xù)性方程在穩(wěn)定流動(dòng)中,假設(shè)一段細(xì)流管,且任一截面上的各物理量都可以看成均勻的,即(ρ1、S1、v1)和(ρ

2、S2、v2)經(jīng)過(guò)t時(shí)間,通過(guò)截面S1流入流管質(zhì)量為經(jīng)過(guò)t時(shí)間,通過(guò)截面S2流出流管質(zhì)量為根據(jù)質(zhì)量守恒原則及穩(wěn)定流動(dòng)的特點(diǎn)有m1=m2,即質(zhì)量流量守恒定律如果是不可壓縮的流體,即有體積流量守恒定律說(shuō)明:1、條件:(1)理想流體(2)穩(wěn)定流動(dòng)2、單位時(shí)間內(nèi)質(zhì)量流量:Q=ρ

Sv(單位:kg/s)3、單位時(shí)間內(nèi)體積流量:V=Sv(單位:m3/s)4、S與v成反比,S大v小,S小v大。5、流管有分支時(shí):(S,v)(S1,

v1)(S2,v2)二、伯努力方程1、伯努力方程的推導(dǎo)利用功能原理來(lái)進(jìn)行推導(dǎo)截取一段流體XY作研究對(duì)象各物理量見(jiàn)圖所示,經(jīng)過(guò)t時(shí)間變?yōu)閄'和Y'F1=P1S1F2=P2S2故當(dāng)流體從XY流到X'Y'時(shí)外力所作功為:故當(dāng)流體從XY流到X'Y'時(shí)的機(jī)械能增量為:由功能原理有:W=E最后整理得:伯努力方程(3)方程中三項(xiàng)都具有壓強(qiáng)的量綱,注意各物理量的單位(5)第一、二項(xiàng)是與速度無(wú)關(guān)稱為靜壓,第三項(xiàng)與速度有關(guān)稱為動(dòng)壓(6)水平管:當(dāng)h1=h2,有:

即流速小的地方壓強(qiáng)大,流速大的地方壓強(qiáng)小。2、說(shuō)明:(1)成立條件:理想流體在流管中作穩(wěn)定流動(dòng)(2)各項(xiàng)分別代表該點(diǎn)壓強(qiáng)、單位體積內(nèi)的重力勢(shì)能、動(dòng)能(4)伯努利方程也叫能量守恒方程例2-1設(shè)有流量為0.12m3s-1的水流過(guò)一管子,A點(diǎn)的壓強(qiáng)為2×105Pa,A點(diǎn)的截面積為100cm2,B點(diǎn)的截面積為60cm2,B點(diǎn)比A點(diǎn)高2m。假設(shè)水的內(nèi)摩察力可以忽略不計(jì),求A、B點(diǎn)的流速和B點(diǎn)壓強(qiáng)。解:根據(jù)連續(xù)性方程有又根據(jù)伯努力方程有2-3伯努利方程的應(yīng)用一、壓強(qiáng)與流速的關(guān)系即流速小的地方壓強(qiáng)大,流速大的地方壓強(qiáng)小。水平管中作穩(wěn)定流動(dòng)時(shí)1、空吸作用圖2-5空吸作用A處和C處的橫截面積遠(yuǎn)大于B處的橫截面積。在A處加一個(gè)外力使管中流體由A向B處流動(dòng)。B處的流速必遠(yuǎn)大于A處和C處的流速,B處的壓強(qiáng)小。若增加流管中流體的流速,可以使B處的流速增到很大,而使B處的壓強(qiáng)很小,于是D容器中的流體因受大氣壓強(qiáng)的作用被壓縮到B處,而被水平管中的流體帶走。這種作用叫空吸作用。

2、流速計(jì)(皮托管)分析:皮托管是粗細(xì)均勻的水平管,a是一根直管,b是一根直角彎管,直管下端的管口截面與流線平行(c處),彎管下端的管口截面與流線垂直(d處),在d處形成速度為零的滯流區(qū)。比較圖c、d兩處的壓強(qiáng)可得由上式求得的速度就是管中各點(diǎn)的流速,對(duì)于該裝置只求出c、d兩點(diǎn)的高度差,即可求得流速圖2-6流速計(jì)原理圖2-7是一種皮托管的簡(jiǎn)單裝置測(cè)量時(shí)放在待測(cè)流速的流體中,2處流速為零,形成滯流區(qū),1孔的孔面平行于流線,流速不為零兩處的壓強(qiáng)差可從U形管中液面的高度差測(cè)得,即由上式可得圖2-7皮托管3、流量計(jì)圖2-8文特利管如圖所示,在變截面的水平管的下方,裝有U形管,內(nèi)裝水銀,測(cè)量水平管內(nèi)的流速時(shí),可將流量計(jì)串聯(lián)于管道中,根據(jù)水銀面的高度差,即可求出流量或流速。

粗、細(xì)兩處各物理量見(jiàn)圖所示,根據(jù)伯努力方程有由連續(xù)性方程有由圖可知由以上3式,解得流量為二、流速和高度的關(guān)系(小孔流速)圖2-9小孔流速大容器下部有一小孔,小孔的面積比容器內(nèi)液體自由表面的小很多,液體可視為理想流體,根據(jù)連續(xù)性方程,小孔處流出液體時(shí),容器自由表面高度h下降非常緩慢,可近似為自由表面的速度為零。實(shí)際上,隨著液面的下降,小孔處的流速也會(huì)逐漸下降,嚴(yán)格說(shuō)來(lái),并不是穩(wěn)定流動(dòng)。但因小孔徑極小,若觀測(cè)時(shí)間很短,液面高度沒(méi)有明顯變化,仍然可以看作穩(wěn)定流動(dòng)對(duì)于任一流線,由伯努利方程得由上式得結(jié)果表明,小孔處流速和物體自高度h處自由下落得到的速度是相同的。這一關(guān)系是意大利物理學(xué)理學(xué)家、數(shù)學(xué)家托里斥利((E.Torricelli)首先發(fā)現(xiàn)的,又稱為托里斥利定理。它反映了壓強(qiáng)不變時(shí),理想流體穩(wěn)定流動(dòng)過(guò)程中,流體重力勢(shì)能與動(dòng)能之間的轉(zhuǎn)換關(guān)系。

實(shí)際上水柱自小孔流出時(shí)截面有所收縮,用有效截面S'代替S,則有例2-2一開(kāi)口水槽中的水深為H,如圖例2-2所示。在水面下h深處開(kāi)一小孔。問(wèn):(1)射出的水流在地板上的射程S是多大?(2)在水槽的其他深度處,能否再開(kāi)一小孔,其射出的水流有相同的射程?(3)小孔開(kāi)在水面下的深度h多大時(shí),射程最遠(yuǎn)?射程多長(zhǎng)?圖例2-2解:(1)P1=P2=P0,h1=H,h2=H-h

解得:從小孔射出來(lái)的水流作平拋運(yùn)動(dòng),射到地面時(shí)間為其射程為

(2)假設(shè)在另一個(gè)開(kāi)一小孔,其離液面高度為h',按上述計(jì)算方法可求得其射程為若有相同射程,即有s=s'解得h'=H-h(3)要使s最大,只要求s的極大值即可

最大射程為H

求得三、壓強(qiáng)與高度的關(guān)系(體位對(duì)血壓的影響)如果流體在等截面管中流動(dòng),其流速不變,由伯努力方程可得高處壓強(qiáng)小,低處壓強(qiáng)大解釋體位對(duì)血壓的影響可見(jiàn)測(cè)血壓要注意體位2-4粘性流體的流動(dòng)一、粘性流體的運(yùn)動(dòng)1、層流和湍流層流:粘性液體的分層流動(dòng),相鄰兩層之間只作相對(duì)滑動(dòng),流層間沒(méi)有橫向滑動(dòng),機(jī)械能不守恒,軸線上速度最大,管壁最小。湍流:當(dāng)液體在管中流速很大時(shí),液體的流動(dòng)不再保持分層流動(dòng)狀態(tài),而變成無(wú)規(guī)則的運(yùn)動(dòng),這時(shí)流體的流動(dòng)有垂直管軸的分速度,而且還會(huì)出現(xiàn)渦流,整個(gè)流動(dòng)顯得雜亂而不穩(wěn)定

圖2-11粘性流體的流動(dòng)2、牛頓粘滯定律牛頓粘滯定律說(shuō)明:(1)dv/dx表示速度梯度,S表示層與層的接觸面積,η為流體的粘滯系數(shù)(2)粘滯系數(shù)的物理意義:速度梯度為1時(shí),單位面積上的粘滯阻力(3)粘滯系數(shù)的單位:Pa.s(4)粘滯系數(shù)的大小由流體的性質(zhì)和溫度決定(5)牛頓流體和非牛頓流體:遵守牛頓粘滯定律的流體為牛頓流體,如水和血漿;不遵守牛頓粘滯定律的流體為非牛頓流體,如血液圖2-12粘性力速度梯度3、雷諾數(shù)雷諾數(shù)Re

(1)Re<1000時(shí),流體作層流(2)Re>1500時(shí),流體作湍流(3)1000<Re<1500時(shí),流體流動(dòng)不穩(wěn)定例2-3主動(dòng)脈的內(nèi)半徑為0.01m,血液的流速、粘滯系數(shù)、密度分別為0.25m/s、0.003Pa.s、1050kg/m3,求雷諾數(shù)并判斷血液以何種形態(tài)流動(dòng)。(Re=875)結(jié)論:液體的粘滯系數(shù)愈小、密度愈大,愈容易發(fā)生湍流,細(xì)管不容易發(fā)生湍流;而彎曲的管子容易發(fā)生湍流。說(shuō)明:

二、粘性流體的運(yùn)動(dòng)規(guī)律結(jié)論:要使粘性流體勻速流體,兩端必須有壓強(qiáng)差圖2-13粘性流體在水平管中的壓強(qiáng)分布幾條豎立直管的液面說(shuō)明,粘性流體在水平管作穩(wěn)定流動(dòng)時(shí),液體的壓強(qiáng)是逐漸減少的,在這里伯努力方程不再適用,因?yàn)榱鲃?dòng)過(guò)程中動(dòng)能和勢(shì)能都沒(méi)有改變,而壓強(qiáng)逐漸減少,這種現(xiàn)象只能用粘性流體在流動(dòng)過(guò)程中要克服粘滯阻力作功來(lái)解釋。1、泊肅葉公式式中R是管子的半徑,η是流體的粘度,L是管子的長(zhǎng)度。

粘性流體在等截面水平細(xì)管作穩(wěn)定流動(dòng)時(shí),如果雷諾數(shù)不大,則流動(dòng)的形態(tài)是層流。泊肅葉公式:說(shuō)明:圖2-14泊肅葉公式的推導(dǎo)泊肅葉公式又可寫(xiě)成如下形式值得注意的是,流阻與管半徑的四次方成反比,半徑的微小變化就會(huì)對(duì)流阻造成很大的影響。血管可以收縮和舒張,其半徑變化對(duì)血液流量的影響是很顯著的。式中其物理意義是:當(dāng)粘性流體流過(guò)一個(gè)水平均勻細(xì)管時(shí),體積流量與管子兩端的壓強(qiáng)差成正比,而與流阻成反比。稱為流阻流阻的單位:流阻的串并聯(lián)例2-4成年人主動(dòng)脈的半徑為1.3cm。問(wèn)在一段0.2m距離內(nèi)的流阻和壓強(qiáng)降落是多少?設(shè)血流量為,解:可見(jiàn)與平均動(dòng)脈壓13.3kPa相比,主動(dòng)脈的血壓降落是微不足道的2、斯托克司定律分析:當(dāng)物體在粘性流體中作勻速運(yùn)動(dòng)時(shí),物體表面附著一層流體,此層流體隨物體一起運(yùn)動(dòng),因而與周?chē)鲗又g存在內(nèi)摩擦力,所以物體在運(yùn)動(dòng)過(guò)程中必須克服這一阻力。如果物體是球形的,且流體對(duì)于球體作層流運(yùn)動(dòng),則球體所受的阻力為斯托克司定律說(shuō)明:R是球體的半徑,v是球體相對(duì)于流體的流速,η是流體的粘滯系數(shù)設(shè)在粘性流體內(nèi)一半徑為R的小球受重力作用而下沉,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論