四川省南充市閬市2023學年中考數(shù)學押題卷含解析及點睛_第1頁
四川省南充市閬市2023學年中考數(shù)學押題卷含解析及點睛_第2頁
四川省南充市閬市2023學年中考數(shù)學押題卷含解析及點睛_第3頁
四川省南充市閬市2023學年中考數(shù)學押題卷含解析及點睛_第4頁
四川省南充市閬市2023學年中考數(shù)學押題卷含解析及點睛_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.據(jù)相關報道,開展精準扶貧工作五年以來,我國約有55000000人擺脫貧困,將55000000用科學記數(shù)法表示是()A.55×106 B.0.55×108 C.5.5×106 D.5.5×1072.如圖,已知是中的邊上的一點,,的平分線交邊于,交于,那么下列結論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE3.通過觀察下面每個圖形中5個實數(shù)的關系,得出第四個圖形中y的值是()A.8 B.﹣8 C.﹣12 D.124.如圖,在中,邊上的高是()A. B. C. D.5.已知線段AB=8cm,點C是直線AB上一點,BC=2cm,若M是AB的中點,N是BC的中點,則線段MN的長度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm6.如圖,直線y=34x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=3A.17 B.16 C.17.若0<m<2,則關于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情況是()A.無實數(shù)根B.有兩個正根C.有兩個根,且都大于﹣3mD.有兩個根,其中一根大于﹣m8.一個六邊形的六個內(nèi)角都是120°(如圖),連續(xù)四條邊的長依次為1,3,3,2,則這個六邊形的周長是()A.13 B.14 C.15 D.169.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側面(不浪費材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm10.下列計算正確的是()A.a(chǎn)2+a2=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:=_____________.12.如圖所示,D、E之間要挖建一條直線隧道,為計算隧道長度,工程人員在線段AD和AE上選擇了測量點B,C,已知測得AD=100,AE=200,AB=40,AC=20,BC=30,則通過計算可得DE長為_____.13.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(1)AB的長等于____;(2)在△ABC的內(nèi)部有一點P,滿足S△PABS△PBCS△PCA=1:2:3,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_______14.如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=10,AC=6,則DF的長為__.15.為參加2018年“宜賓市初中畢業(yè)生升學體育考試”,小聰同學每天進行立定跳遠練習,并記錄下其中7天的最好成績(單位:m)分別為:2.21,2.12,2.1,2.39,2.1,2.40,2.1.這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是_____.16.請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計分.A.如圖,在平面直角坐標系中,點的坐標為,沿軸向右平移后得到,點的對應點是直線上一點,則點與其對應點間的距離為__________.B.比較__________的大?。?、解答題(共8題,共72分)17.(8分)為營造“安全出行”的良好交通氛圍,實時監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數(shù);求攝像頭下端點F到地面AB的距離.(精確到百分位)18.(8分)如圖1為某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問總量的條形統(tǒng)計圖,如圖2為該網(wǎng)站本周學生日訪問量占日訪問總量的百分比統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息完成下列填空:這一周訪問該網(wǎng)站一共有萬人次;周日學生訪問該網(wǎng)站有萬人次;周六到周日學生訪問該網(wǎng)站的日平均增長率為.19.(8分)計算:(-)-2–2()+20.(8分)如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C處測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.求AC和AB的長(結果保留小數(shù)點后一位)(參考數(shù)據(jù):sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)21.(8分)某種商品每天的銷售利潤元,銷售單價元,間滿足函數(shù)關系式:,其圖象如圖所示.(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于21元?22.(10分)解分式方程:=123.(12分)五一期間,小紅到郊野公園游玩,在景點P處測得景點B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與景點B之間的距離.(結果保留整數(shù))參考數(shù)據(jù):sin37≈0.60,cos37°=0.80,tan37°≈0.7524.如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=mx(1)求一次函數(shù),反比例函數(shù)的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題解析:55000000=5.5×107,故選D.考點:科學記數(shù)法—表示較大的數(shù)2、C【解析】

根據(jù)相似三角形的判定,采用排除法,逐項分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.【點睛】本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊和對應角.3、D【解析】

根據(jù)前三個圖形中數(shù)字之間的關系找出運算規(guī)律,再代入數(shù)據(jù)即可求出第四個圖形中的y值.【詳解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故選D.【點睛】本題考查了規(guī)律型中數(shù)字的變化類,根據(jù)圖形中數(shù)與數(shù)之間的關系找出運算規(guī)律是解題的關鍵.4、D【解析】

根據(jù)三角形的高線的定義解答.【詳解】根據(jù)高的定義,AF為△ABC中BC邊上的高.故選D.【點睛】本題考查了三角形的高的定義,熟記概念是解題的關鍵.5、B【解析】(1)如圖1,當點C在點A和點B之間時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當點C在點B的右側時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長度為5cm或3cm.故選B.點睛:解本題時,由于題目中告訴的是點C在直線AB上,因此根據(jù)題目中所告訴的AB和BC的大小關系要分點C在線段AB上和點C在線段AB的延長線上兩種情況分析解答,不要忽略了其中任何一種.6、A【解析】

過O作OC⊥AB于C,過N作ND⊥OA于D,設N的坐標是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【詳解】過O作OC⊥AB于C,過N作ND⊥OA于D,∵N在直線y=34∴設N的坐標是(x,34則DN=34y=34當x=0時,y=3,當y=0時,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,勾股定理,三角形的面積,解直角三角形等知識點的運用,主要考查學生運用這些性質(zhì)進行計算的能力,題目比較典型,綜合性比較強.7、A【解析】

先整理為一般形式,用含m的式子表示出根的判別式△,再結合已知條件判斷△的取值范圍即可.【詳解】方程整理為,△,∵,∴,∴△,∴方程沒有實數(shù)根,故選A.【點睛】本題考查了一元二次方程根的判別式,當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.8、C【解析】

解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、I.因為六邊形ABCDEF的六個角都是120°,所以六邊形ABCDEF的每一個外角的度數(shù)都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.9、A【解析】

根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案?!驹斀狻恐睆绞堑膱A形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設每個圓錐容器的地面半徑為解得故答案選A.【點睛】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。10、D【解析】

各項計算得到結果,即可作出判斷.【詳解】A、原式=2a2,不符合題意;B、原式=-a6,不符合題意;C、原式=a2+2ab+b2,不符合題意;D、原式=-4b,符合題意,故選:D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:按單項式乘以多項式的法則將括號去掉,在合并同類項即可.詳解:原式=.故答案為:.點睛:熟記整式乘法和加減法的相關運算法則是正確解答這類題的關鍵.12、1.【解析】

先根據(jù)相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性質(zhì)解答即可.【詳解】∵∴又∵∠A=∠A,∴△ABC∽△AED,∴∵BC=30,∴DE=1,故答案為1.【點睛】考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關鍵.13、;答案見解析.【解析】

(1)AB==.故答案為.(2)如圖AC與網(wǎng)格相交,得到點D、E,取格點F,連接FB并且延長,與網(wǎng)格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點P,點P即為所求.理由:平行四邊形ABME的面積:平行四邊形CDNB的面積:平行四邊形DEMG的面積=1:2:1,△PAB的面積=平行四邊形ABME的面積,△PBC的面積=平行四邊形CDNB的面積,△PAC的面積=△PNG的面積=△DGN的面積=平行四邊形DEMG的面積,∴S△PAB:S△PBC:S△PCA=1:2:1.14、1【解析】

試題分析:如圖,延長CF交AB于點G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵點D是BC中點,∴DF是△CBG的中位線.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.15、2.40,2.1.【解析】∵把7天的成績從小到大排列為:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它們的中位數(shù)為2.40,眾數(shù)為2.1.故答案為2.40,2.1.點睛:本題考查了中位數(shù)和眾數(shù)的求法,如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)是這組數(shù)據(jù)的眾數(shù).16、5>【解析】

A:根據(jù)平移的性質(zhì)得到OA′=OA,OO′=BB′,根據(jù)點A′在直線求出A′的橫坐標,進而求出OO′的長度,最后得到BB′的長度;B:根據(jù)任意角的正弦值等于它余角的余弦值將sin53°化為cos37°,再進行比較.【詳解】A:由平移的性質(zhì)可知,OA′=OA=4,OO′=BB′.因為點A′在直線上,將y=4代入,得到x=5.所以OO′=5,又因為OO′=BB′,所以點B與其對應點B′間的距離為5.故答案為5.B:sin53°=cos(90°-53°)=cos37°,tan37°=,根據(jù)正切函數(shù)與余弦函數(shù)圖像可知,tan37°>tan30°,cos37°>cos45°,即tan37°>,cos37°<,又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.【點睛】本題主要考查圖形的平移、一次函數(shù)的解析式和三角函數(shù)的圖像,熟練掌握這些知識并靈活運用是解答的關鍵.三、解答題(共8題,共72分)17、(1)(2)6.03米【解析】

分析:延長ED,AM交于點P,由∠CDE=162°及三角形外角的性質(zhì)可得出結果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.詳解:(1)如圖,延長ED,AM交于點P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如圖,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:攝像頭下端點F到地面AB的距離為6.03米.點睛:本題考查了解直角三角形的應用,解決此類問題要了解角之間的關系,找到已知和未知相關聯(lián)的的直角三角形,當圖形中沒有直角三角形時,要通過作高線或垂線構造直角三角形.18、(1)10;(2)0.9;(3)44%【解析】

(1)把條形統(tǒng)計圖中每天的訪問量人數(shù)相加即可得出答案;(2)由星期日的日訪問總量為3萬人次,結合扇形統(tǒng)計圖可得星期日學生日訪問總量占日訪問總量的百分比為30%,繼而求得星期日學生日訪問總量;(3)根據(jù)增長率的算數(shù)列出算式,再進行計算即可.【詳解】(1)這一周該網(wǎng)站訪問總量為:0.5+1+0.5+1+1.5+2.5+3=10(萬人次);故答案為10;(2)∵星期日的日訪問總量為3萬人次,星期日學生日訪問總量占日訪問總量的百分比為30%,∴星期日學生日訪問總量為:3×30%=0.9(萬人次);故答案為0.9;(3)周六到周日學生訪問該網(wǎng)站的日平均增長率為:=44%;故答案為44%.考點:折線統(tǒng)計圖;條形統(tǒng)計圖19、0【解析】

本題涉及負指數(shù)冪、二次根式化簡和絕對值3個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果.【詳解】原式.【點睛】本題主要考查負指數(shù)冪、二次根式化簡和絕對值,熟悉掌握是關鍵.20、AC=6.0km,AB=1.7km;【解析】

在Rt△AOC,由∠的正切值和OC的長求出OA,在Rt△BOC,由∠BCO的大小和OC的長求出OA,而AB=OB-0A,即可得到答案。【詳解】由題意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC?tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的長為6.0km,AB的長為1.7km.【點睛】本題主要考查三角函數(shù)的知識。21、(1)10,1;(2).【解析】

(1)將點代入中,求出函數(shù)解析式,再根據(jù)二次函數(shù)的性質(zhì)求出最大值即可;(2)求出對稱軸為直線,可知點關于對稱軸的對稱點是,再根據(jù)圖象判斷出x的取值范圍即可.【詳解】解:(1)圖象過點,,解得..的頂點坐標為.,∴當時,最大=1.答:該商品的銷售單價為10元時,每天的銷售利潤最大,最大利潤為1元.(2)∵函數(shù)圖象的對稱軸為直線,可知點關于對稱軸的對稱點是,又∵函數(shù)圖象開口向下,∴當時,.答:銷售單價不少于8元且不超過12元時,該種商品每天的銷售利潤不低于21元.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)的性質(zhì),解題的關鍵是熟悉待定系數(shù)法以及二次函數(shù)的性質(zhì).22、x=1【解析】

分式方程變形后去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】化為整式方程得:2﹣3x=x﹣2,解得:x=1,經(jīng)檢驗x=1是原方程的解,所以原方程的解是x=1.【點睛】此題考查了解分式方程,解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.解分式方程一定注意要驗根.23、景點A與B之間的距離大約為280米【解析】

由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的長,可以先求出AC和BC的長.【詳解】解:如圖,作PC⊥AB于C,則∠ACP=∠BCP=90°,由題意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP?cosA=200×0.8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論