2023屆防城港市重點(diǎn)中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第1頁
2023屆防城港市重點(diǎn)中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第2頁
2023屆防城港市重點(diǎn)中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第3頁
2023屆防城港市重點(diǎn)中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第4頁
2023屆防城港市重點(diǎn)中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.2.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為則()A. B.C. D.3.設(shè)函數(shù),當(dāng)時(shí),,則()A. B. C.1 D.4.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米5.某校8位學(xué)生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學(xué)生這兩次的月考成績各自組成樣本,則這兩個(gè)樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)6.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.7.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.18.設(shè)是等差數(shù)列,且公差不為零,其前項(xiàng)和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件9.百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運(yùn)動會中有這樣的一個(gè)小游戲.袋子中有大小、形狀完全相同的四個(gè)小球,分別寫有“仁”、“智”、“雅”、“和”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“仁”、“智”兩個(gè)字都摸到就停止摸球.小明同學(xué)用隨機(jī)模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機(jī)產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機(jī)數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):141432341342234142243331112322342241244431233214344142134412由此可以估計(jì),恰好第三次就停止摸球的概率為()A. B. C. D.10.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿足,,,則雙曲線的離心率為A. B. C. D.511.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.412.某個(gè)小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.140二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對應(yīng)的向量分別是,,則_______.14.如圖所示梯子結(jié)構(gòu)的點(diǎn)數(shù)依次構(gòu)成數(shù)列,則________.15.如圖是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,設(shè),,則的面積為________.16.已知,則展開式的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線l過點(diǎn),且傾斜角為,以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.求直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程,并判斷曲線C是什么曲線;設(shè)直線l與曲線C相交與M,N兩點(diǎn),當(dāng),求的值.18.(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過點(diǎn)P(﹣2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.19.(12分)已知函數(shù).(1)當(dāng)時(shí),判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.20.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.21.(12分)某工廠的機(jī)器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時(shí),需要送維修處維修.工廠規(guī)定當(dāng)日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作.每個(gè)工人獨(dú)立維修A元件需要時(shí)間相同.維修處記錄了某月從1日到20日每天維修元件A的個(gè)數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個(gè)數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個(gè)數(shù)12241515151215151524從這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個(gè)數(shù).(Ⅰ)求X的分布列與數(shù)學(xué)期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個(gè)維修工人每天維修元件A的個(gè)數(shù)的數(shù)學(xué)期望不超過4個(gè),至少需要增加幾名維修工人?(只需寫出結(jié)論)22.(10分)選修4-5:不等式選講已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.2、B【解析】

根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡即可求解.【詳解】在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)對應(yīng)點(diǎn)坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.3、A【解析】

由降冪公式,兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時(shí),,,∴,由題意,∴.故選:A.【點(diǎn)睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.4、D【解析】

根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.5、A【解析】

通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A【點(diǎn)睛】本題主要考查樣本的數(shù)字特征,意在考查學(xué)生對這些知識的理解掌握水平.6、C【解析】

把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡,由實(shí)部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.7、A【解析】

根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪ⅲ陨先我庖稽c(diǎn)處的切線斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.8、A【解析】

根據(jù)等差數(shù)列的前項(xiàng)和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項(xiàng)和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時(shí),,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時(shí),,此時(shí),,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項(xiàng)和公式是解決本題的關(guān)鍵,屬于中等題.9、A【解析】

由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【詳解】由題意可知當(dāng)1,2同時(shí)出現(xiàn)時(shí)即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點(diǎn)睛】本題考查了簡單隨機(jī)抽樣中隨機(jī)數(shù)的應(yīng)用和古典概型概率的計(jì)算,屬于基礎(chǔ)題.10、D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點(diǎn)睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.11、A【解析】

由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題12、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由坐標(biāo)系可知考點(diǎn):復(fù)數(shù)運(yùn)算14、【解析】

根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15、【解析】

根據(jù)個(gè)全等的三角形,得到,設(shè),求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,所以.在三角形中,.設(shè),則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點(diǎn)睛】本題考查了等邊三角形的面積計(jì)算公式、余弦定理、全等三角形的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.16、【解析】

先根據(jù)定積分求出的值,再用二項(xiàng)展開式公式即可求解.【詳解】因?yàn)樗缘耐?xiàng)公式為當(dāng)時(shí),當(dāng)時(shí),故展開式中的系數(shù)為故答案為:【點(diǎn)睛】此題考查定積分公式,二項(xiàng)展開式公式等知識點(diǎn),屬于簡單題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)曲線是焦點(diǎn)在軸上的橢圓;(Ⅱ).【解析】試題分析:(1)由題易知,直線的參數(shù)方程為,(為參數(shù)),;曲線的直角坐標(biāo)方程為,橢圓;(2)將直線代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線的參數(shù)方程為.曲線的直角坐標(biāo)方程為,即,所以曲線是焦點(diǎn)在軸上的橢圓.(Ⅱ)將的參數(shù)方程代入曲線的直角坐標(biāo)方程為得,,得,,18、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】

(2)設(shè)圓心為M(m,0),根據(jù)相切得到,計(jì)算得到答案.(2)把直線ax﹣y+5=0,代入圓的方程,計(jì)算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程為,即x+ay+2﹣4a=0,過點(diǎn)M(2,0),計(jì)算得到答案.【詳解】(2)設(shè)圓心為M(m,0)(m∈Z).由于圓與直線4x+3y﹣29=0相切,且半徑為5,所以,即|4m﹣29|=2.因?yàn)閙為整數(shù),故m=2.故所求圓的方程為(x﹣2)2+y2=2.(2)把直線ax﹣y+5=0,即y=ax+5,代入圓的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直線ax﹣y+5=0交圓于A,B兩點(diǎn),故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以實(shí)數(shù)a的取值范圍是().(3)設(shè)符合條件的實(shí)數(shù)a存在,則直線l的斜率為,l的方程為,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圓心M(2,0)必在l上,所以2+0+2﹣4a=0,解得.由于,故存在實(shí)數(shù)使得過點(diǎn)P(﹣2,4)的直線l垂直平分弦AB.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.19、(1)在為增函數(shù);證明見解析(2)【解析】

(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類討論思想和導(dǎo)數(shù)性質(zhì)求出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),.記,則,當(dāng)時(shí),,.所以,所以在單調(diào)遞增,所以.因?yàn)?,所以,所以在為增函?shù).(2)由題意,得,記,則,令,則,當(dāng)時(shí),,,所以,所以在為增函數(shù),即在單調(diào)遞增,所以.①當(dāng),,恒成立,所以為增函數(shù),即在單調(diào)遞增,又,所以,所以在為增函數(shù),所以所以滿足題意.②當(dāng),,令,,因?yàn)椋?,故在單調(diào)遞增,故,即.故,又在單調(diào)遞增,由零點(diǎn)存在性定理知,存在唯一實(shí)數(shù),,當(dāng)時(shí),,單調(diào)遞減,即單調(diào)遞減,所以,此時(shí)在為減函數(shù),所以,不合題意,應(yīng)舍去.綜上所述,的取值范圍是.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值和零點(diǎn)及不等式恒成立等問題,考查化歸與轉(zhuǎn)化思想、分類與整合思想、函數(shù)與方程思想,考查了學(xué)生的邏輯推理和運(yùn)算求解能力,屬于難題.20、(1);(2)證明見解析【解析】

(1)將函數(shù)整理為分段函數(shù)形式可得,進(jìn)而分類討論求解不等式即可;(2)先利用絕對值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當(dāng)時(shí),恒成立,;②當(dāng)時(shí),,即,;③當(dāng)時(shí),顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當(dāng)且僅當(dāng)時(shí)取等號)(當(dāng)且僅當(dāng)時(shí)取等號)(當(dāng)且僅當(dāng)時(shí)取等號)上述三式相加可得(當(dāng)且僅當(dāng)時(shí)取等號),,故得證.【點(diǎn)睛】本題考查解絕對值不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論