2023年上海工商職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年上海工商職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年上海工商職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年上海工商職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年上海工商職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年上海工商職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.命題“若a>3,則a>5”的逆命題是______.答案:∵原命題“若a>3,則a>5”的條件是a>3,結(jié)論是a>5∴逆命題是“若a>5,則a>3”故為:若a>5,則a>32.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點(diǎn)P,PD=2a3,∠OAP=30°,則CP=______.答案:因?yàn)辄c(diǎn)P是AB的中點(diǎn),由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.3.一圓形紙片的圓心為點(diǎn)O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一定點(diǎn),點(diǎn)A是圓周上一點(diǎn).把紙片折疊使點(diǎn)A與Q重合,然后展平紙片,折痕與OA交于P點(diǎn).當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是()A.圓B.橢圓C.雙曲線D.拋物線答案:如圖所示,由題意可知:折痕l為線段AQ的垂直平分線,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是以點(diǎn)O,D為焦點(diǎn),長(zhǎng)軸長(zhǎng)為R的橢圓.故選B.4.若a、b是直線,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),則α、β所成二面角中較小的一個(gè)余弦值為______.答案:由題意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中較小的一個(gè)余弦值為1225故為12255.選修4-1:幾何證明選講

如圖,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AE的長(zhǎng)為m,AC的長(zhǎng)為n,AD,AB的長(zhǎng)是關(guān)于x的方程x2-14x+mn=0的兩個(gè)根.

(Ⅰ)證明:C,B,D,E四點(diǎn)共圓;

(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.

答案:(I)連接DE,根據(jù)題意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,從而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四點(diǎn)共圓.(Ⅱ)m=4,n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.故AD=2,AB=12.取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點(diǎn),連接DH.∵C,B,D,E四點(diǎn)共圓,∴C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四點(diǎn)所在圓的半徑為526.長(zhǎng)方體的長(zhǎng)、寬、高之比是1:2:3,對(duì)角線長(zhǎng)是214,則長(zhǎng)方體的體積是

______.答案:長(zhǎng)方體的長(zhǎng)、寬、高之比是1:2:3,所以長(zhǎng)方體的長(zhǎng)、寬、高是x:2x:3x,對(duì)角線長(zhǎng)是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,長(zhǎng)方體的長(zhǎng)、寬、高是2,4,6;長(zhǎng)方體的體積是:2×4×6=48故為:487.設(shè)ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現(xiàn)給出以下結(jié)論,其中你認(rèn)為正確的是______.

①都大于1②都小于1③至少有一個(gè)不大于1④至多有一個(gè)不小于1⑤至少有一個(gè)不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對(duì)于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對(duì);若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對(duì);由于③與①兩結(jié)論互否,故③對(duì)④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個(gè)的比值大于1是可以的,故不對(duì)⑤與②兩結(jié)論互否,故正確綜上③⑤兩結(jié)論正確故為③⑤8.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組

x-

y=1x+y=3解之得x=2y=1故為x=2y=19.過直線y=x上的一點(diǎn)作圓(x-5)2+(y-1)2=2的兩條切線l1,l2,當(dāng)直線l1,l2關(guān)于y=x對(duì)稱時(shí),它們之間的夾角為()

A.30°

B.45°

C.60°

D.90°答案:C10.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P,若PBPA=12,PCPD=13,則BCAD的值為______.答案:因?yàn)锳,B,C,D四點(diǎn)共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因?yàn)椤螾為公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.設(shè)OB=x,PC=y,則有x3y=y2x?x=6y2,所以BCAD=x3y=66.故填:66.11.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長(zhǎng)為2;側(cè)視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點(diǎn)E,連接BE,PE,CE,根據(jù)題意可知BE∥CD,∴∠PBE為異面直線PB與CD所成角根據(jù)條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.12.下列點(diǎn)在x軸上的是()

A.(0.1,0.2,0.3)

B.(0,0,0.001)

C.(5,0,0)

D.(0,0.01,0)答案:C13.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實(shí)根,且一個(gè)大于4,一個(gè)小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。14.三行三列的方陣.a11a12

a13a21a22

a23a31a32

a33.中有9個(gè)數(shù)aji(i=1,2,3;j=1,2,3),從中任取三個(gè)數(shù),則它們不同行且不同列的概率是()A.37B.47C.114D.1314答案:從給出的9個(gè)數(shù)中任取3個(gè)數(shù),共有C39;從三行三列的方陣中任取三個(gè)數(shù),使它們不同行且不同列:從第一行中任取一個(gè)數(shù)有C13種方法,則第二行只能從另外兩列中的兩個(gè)數(shù)任取一個(gè)有C12種方法,第三行只能從剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴從三行三列的方陣中任取三個(gè)數(shù),則它們不同行且同列的概率P=6C39=114.故選C.15.用反證法證明命題:“三角形的內(nèi)角至多有一個(gè)鈍角”,正確的假設(shè)是()

A.三角形的內(nèi)角至少有一個(gè)鈍角

B.三角形的內(nèi)角至少有兩個(gè)鈍角

C.三角形的內(nèi)角沒有一個(gè)鈍角

D.三角形的內(nèi)角沒有一個(gè)鈍角或至少有兩個(gè)鈍角答案:B16.規(guī)定運(yùn)算.abcd.=ad-bc,則.1i-i2.=______.答案:根據(jù)題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.17.某航空公司經(jīng)營A,B,C,D這四個(gè)城市之間的客運(yùn)業(yè)務(wù),它們之間的直線距離的部分機(jī)票價(jià)格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機(jī)票價(jià)格與往返城市間的直線距離成正比,則BD間直線距離的票價(jià)為(設(shè)這四個(gè)城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A18.若直線x=1的傾斜角為α,則α等于

______.答案:因?yàn)橹本€x=1與y軸平行,所以直線x=1的傾斜角為90°.故為:90°19.橢圓x216+y27=1上的點(diǎn)M到左準(zhǔn)線的距離為53,則點(diǎn)M到左焦點(diǎn)的距離為()A.8B.5C.274D.54答案:根據(jù)橢圓的第二定義可知M到左焦點(diǎn)F1的距離與其到左準(zhǔn)線的距離之比為離心率,依題意可知a=4,b=7∴c=3∴e=ca=34,∴根據(jù)橢圓的第二定義有:MF

1d=34∴M到左焦點(diǎn)的距離為MF1=53×34=54故選D.20.下列函數(shù)中,既是偶函數(shù),又在(0,1)上單調(diào)遞增的函數(shù)是()A.y=|log3x|B.y=x3C.y=e|x|D.y=cos|x|答案:對(duì)于A選項(xiàng),函數(shù)定義域是(0,+∞),故是非奇非偶函數(shù),不合題意,A選項(xiàng)不正確;對(duì)于B選項(xiàng),函數(shù)y=x3是一個(gè)奇函數(shù),故不是正確選項(xiàng);對(duì)于C選項(xiàng),函數(shù)的定義域是R,是偶函數(shù),且當(dāng)x∈(0,+∞)時(shí),函數(shù)是增函數(shù),故在(0,1)上單調(diào)遞增,符合題意,故C選項(xiàng)正確;對(duì)于D選項(xiàng),函數(shù)y=cos|x|是偶函數(shù),在(0,1)上單調(diào)遞減,不合題意綜上知,C選項(xiàng)是正確選項(xiàng)故選C21.一個(gè)多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長(zhǎng)為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A22.已知實(shí)數(shù)x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設(shè)P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點(diǎn)P到原點(diǎn)的距離的最小值.則根據(jù)點(diǎn)到直線的距離公式得點(diǎn)P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.23.老師在班級(jí)50名學(xué)生中,依次抽取學(xué)號(hào)為5,10,15,20,25,30,35,40,45,50的學(xué)和進(jìn)行作業(yè)檢查,這種抽樣方法是()

A.隨機(jī)抽樣

B.分層抽樣

C.系統(tǒng)抽樣

D.以上都是答案:C24.已知a,b,c是正實(shí)數(shù),且a+b+c=1,則的最小值為(

)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識(shí)。將1代入中,得,當(dāng)且僅當(dāng),又,故時(shí)不等式取,選C。25.過點(diǎn)P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數(shù))相交于A,B兩點(diǎn).求線段AB的長(zhǎng).答案:直線的參數(shù)方程為

x

=

-3

+

32sy

=

12s

(s

為參數(shù)),曲線x=t+1ty=t-1t

可以化為

x2-y2=4.將直線的參數(shù)方程代入上式,得

s2-63s+

10

=

0.設(shè)A、B對(duì)應(yīng)的參數(shù)分別為s1,s2,∴s1+

s2=

6

3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.26.已知a>0,且a≠1,解關(guān)于x的不等式:

答案:①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<0解析:原不等式等價(jià)于原不等式同解于7分由①②得1<ax<4,由③得從而1<ax≤210分①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<027.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…,用S1、S2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B28.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是()A.若a+b不是偶數(shù),則a,b都不是奇數(shù)B.若a+b不是偶數(shù),則a,b不都是奇數(shù)C.若a+b是偶數(shù),則a,b都是奇數(shù)D.若a+b是偶數(shù),則a,b不都是奇數(shù)答案:“a,b都是奇數(shù)”的否定是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否定是“a+b不是偶數(shù)”,故命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故選B.29.口袋中有5只球,編號(hào)為1,2,3,4,5,從中任取3球,以ξ表示取出的球的最大號(hào)碼,則Eξ的值是()A.4B.4.5C.4.75D.5答案:由題意,ξ的取值可以是3,4,5ξ=3時(shí),概率是1C35=110ξ=4時(shí),概率是C23C35=310(最大的是4其它兩個(gè)從1、2、3里面隨機(jī)?。│?5時(shí),概率是C24C35=610(最大的是5,其它兩個(gè)從1、2、3、4里面隨機(jī)?。嗥谕鸈ξ=3×110+4×310+5×610=4.5故選B.30.從1,2,…,9這九個(gè)數(shù)中,隨機(jī)抽取3個(gè)不同的數(shù),則這3個(gè)數(shù)的和為偶數(shù)的概率是()A.59B.49C.1121D.1021答案:基本事件總數(shù)為C93,設(shè)抽取3個(gè)數(shù),和為偶數(shù)為事件A,則A事件數(shù)包括兩類:抽取3個(gè)數(shù)全為偶數(shù),或抽取3數(shù)中2個(gè)奇數(shù)1個(gè)偶數(shù),前者C43,后者C41C52.∴A中基本事件數(shù)為C43+C41C52.∴符合要求的概率為C34+C14C25C39=1121.31.如圖,直線AB是平面α的斜線,A為斜足,若點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),使得點(diǎn)P到直線AB的距離為定值a(a>0),則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因?yàn)辄c(diǎn)P到直線AB的距離為定值a,所以,P點(diǎn)在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.32.下列函數(shù)f(x)與g(x)表示同一函數(shù)的是

()A.f(x)=x0與g(x)=1B.f(x)=2lgx與g(x)=lgx2C.f(x)=|x|與g(x)=(x)2D.f(x)=x與g(x)=3x3答案:A、∵f(x)=x0,其定義域?yàn)閧x|x≠0},而g(x)的定義域?yàn)镽,故A錯(cuò)誤;B、∵f(x)=2lgx,的定義域?yàn)閧x|x>0},而g(x)=lgx2的定義域?yàn)镽,故B錯(cuò)誤;C、∵f(x)=|x|與g(x)=(x)2=x,其中f(x)的定義域?yàn)镽,g(x)的定義域?yàn)閧x|x≥0},故C錯(cuò)誤;D、∵f(x)=x與g(x)=3x3=x,其中f(x)與g(x)的定義域?yàn)镽,故D正確.故選D.33.某校有初中學(xué)生1200人,高中學(xué)生900人,教師120人,現(xiàn)用分層抽樣方法從所有師生中抽取一個(gè)容量為n的樣本進(jìn)行調(diào)查,如果從高中學(xué)生中抽取60人,那么n=______.答案:每個(gè)個(gè)體被抽到的概率等于60900=115.故n=(1200+900+120)×115=1220×115=148,故為:148.34.曲線C:x=t-2y=1t+1(t為參數(shù))的對(duì)稱中心坐標(biāo)是______.答案:曲線C:x=t-2y=1t+1(t為參數(shù))即y-1=1x+2,其對(duì)稱中心為(-2,1).故為:(-2,1).35.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(diǎn)(2,4),則f(x)=______,g(x)=______.答案:設(shè)f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個(gè)解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x236.由直角△ABC勾上一點(diǎn)D作弦AB的垂線交弦于E,交股的延長(zhǎng)線于F,交外接圓于G,求證:EG為EA和EB的比例中項(xiàng),又為ED和EF的比例中項(xiàng).

答案:證明:連接GA、GB,則△AGB也是一個(gè)直角三角形,因?yàn)镋G為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項(xiàng),即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項(xiàng).37.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A38.如圖,在平行四邊形OABC中,點(diǎn)C(1,3).

(1)求OC所在直線的斜率;

(2)過點(diǎn)C做CD⊥AB于點(diǎn)D,求CD所在直線的方程.答案:(1)∵點(diǎn)O(0,0),點(diǎn)C(1,3),∴OC所在直線的斜率為kOC=3-01-0=3.(2)在平行四邊形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直線的斜率為kCD=-13.∴CD所在直線方程為y-3=-13(x-1),即x+3y-10=0.39.下列函數(shù)中,定義域?yàn)椋?,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域?yàn)椋?,+∞),函數(shù)y=x的定義域?yàn)閇0,+∞),函數(shù)y=1x2的定義域?yàn)閧x|x≠0},函數(shù)y=12x的定義域?yàn)镽,故只有A中的函數(shù)滿足定義域?yàn)椋?,+∞),故選A.40.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù),若通話費(fèi)為10.6元,則通話時(shí)間m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故為:(17,18].41.如圖,AB是平面a的斜線段,A為斜足,若點(diǎn)P在平面a內(nèi)運(yùn)動(dòng),使得△ABP的面積為定值,則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實(shí)就是一個(gè)平面斜截一個(gè)圓柱表面的問題,因?yàn)槿切蚊娣e為定值,以AB為底,則底邊長(zhǎng)一定,從而可得P到直線AB的距離為定值,分析可得,點(diǎn)P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.42.凡自然數(shù)都是整數(shù),而

4是自然數(shù)

所以4是整數(shù).以上三段論推理()

A.正確

B.推理形式不正確

C.兩個(gè)“自然數(shù)”概念不一致

D.兩個(gè)“整數(shù)”概念不一致答案:A43.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小,則實(shí)數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實(shí)數(shù)a的取值范圍為(-2,1)故為:(-2,1)44.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過

B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分

∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D45.過A(-2,3),B(2,1)兩點(diǎn)的直線的斜率是()

A.

B.

C.-2

D.2答案:B46.橢圓x29+y216=1上一動(dòng)點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.47.下面四個(gè)結(jié)論:

①偶函數(shù)的圖象一定與y軸相交;

②奇函數(shù)的圖象一定通過原點(diǎn);

③偶函數(shù)的圖象關(guān)于y軸對(duì)稱;

④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R),

其中正確命題的個(gè)數(shù)是()A.1B.2C.3D.4答案:偶函數(shù)的圖象關(guān)于y軸對(duì)稱,但不一定與y軸相交,因此①錯(cuò)誤,③正確;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,但不一定經(jīng)過原點(diǎn),只有在原點(diǎn)處有定義才通過原點(diǎn),因此②錯(cuò)誤;若y=f(x)既是奇函數(shù),又是偶函數(shù),由定義可得f(x)=0,但不一定x∈R,只要定義域關(guān)于原點(diǎn)對(duì)稱即可,因此④錯(cuò)誤.故選A.48.如圖,橢圓C2x2a2+

y2b2=1的焦點(diǎn)為F1,F(xiàn)2,|A1B1|=7,S□B1A1B2A2=2S□B1F1B2F2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)n為過原點(diǎn)的直線,l是與n垂直相交與點(diǎn)P,與橢圓相交于A,B兩點(diǎn)的直線|op|=1,是否存在上述直線l使OA?OB=0成立?若存在,求出直線l的方程;并說出;若不存在,請(qǐng)說明理由.答案:(Ⅰ)由題意可知a2+b2=7,∵S□B1A1B2A2=2S□B1F1B2F2,∴a=2c.解得a2=4,b2=3,c2=1.∴橢圓C的方程為x24+y33=1.(Ⅱ)設(shè)A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),假設(shè)使OA?OB=0成立的直線l存在.(i)當(dāng)l不垂直于x軸時(shí),設(shè)l的方程為y=kx+m,由l與n垂直相交于P點(diǎn),且|OP|=1得|m|1+

k2=1,即m2=k2+1,由OA?OB=0得x1x2+y1y2=0,將y=kx+m代入橢圓得(3+4k2)x2+8kmx+(4m2-12)=0,x1+x2=-8km3+4k2,①,x1x2=4m2-123+4k2,②0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2把①②代入上式并化簡(jiǎn)得(1+k2)(4m2-12)-8k2m2+m2(3+4k2)=0,③將m2=1+k2代入③并化簡(jiǎn)得-5(k2+1)=0矛盾.即此時(shí)直線l不存在.(ii)當(dāng)l垂直于x軸時(shí),滿足|OP|=1的直線l的方程為x=1或x=-1,由A、B兩點(diǎn)的坐標(biāo)為(1,32),(1,-32)或(-1,32),(-1,-32).當(dāng)x=1時(shí),OA?OB=(1,32)?

(1,-32)=-54≠0.當(dāng)x=-1時(shí),OA?OB=(-1,32)?

(-1,-32)=-54≠0.∴此時(shí)直線l也不存在.綜上所述,使OA?OB=0成立的直線l不成立.49.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運(yùn)會(huì)的一號(hào)、二號(hào)和三號(hào)場(chǎng)地的乒乓球裁判工作,每個(gè)場(chǎng)地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()

A.12種

B.48種

C.90種

D.96種答案:B50.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點(diǎn),并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長(zhǎng)交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C第2卷一.綜合題(共50題)1.有5組(x,y)的統(tǒng)計(jì)數(shù)據(jù):(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的數(shù)據(jù)具有較強(qiáng)的相關(guān)關(guān)系,應(yīng)去掉的一組數(shù)據(jù)是()

A.(1,2)

B.(4,5)

C.(3,10)

D.(10,12)答案:C2.已知關(guān)于的不等式的解集為,且,求的值答案:,,解析:用數(shù)形結(jié)合法,如圖顯然解集是,即,從而此時(shí)=與交點(diǎn)橫坐標(biāo)為5,從而縱坐標(biāo)為4,將交點(diǎn)坐標(biāo)代入可得所以,,3.直線y=x-1的傾斜角是()

A.30°

B.120°

C.60°

D.150°答案:A4.用樣本估計(jì)總體,下列說法正確的是()A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計(jì)就越精確C.樣本容量越小,估計(jì)就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計(jì)總體時(shí),樣本容量越大,估計(jì)就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標(biāo)準(zhǔn)差可以近似地反映總體的波動(dòng)狀態(tài),數(shù)據(jù)的方差越大,說明數(shù)據(jù)越不穩(wěn)定,樣本的結(jié)果可以粗略的估計(jì)總體的結(jié)果,但不就是總體的結(jié)果.故選B.5.已知

p:所有國產(chǎn)手機(jī)都有陷阱消費(fèi),則¬p是()

A.所有國產(chǎn)手機(jī)都沒有陷阱消費(fèi)

B.有一部國產(chǎn)手機(jī)有陷阱消費(fèi)

C.有一部國產(chǎn)手機(jī)沒有陷阱消費(fèi)

D.國外產(chǎn)手機(jī)沒有陷阱消費(fèi)答案:C6.在直徑為4的圓內(nèi)接矩形中,最大的面積是()

A.4

B.2

C.6

D.8答案:D7.從⊙O外一點(diǎn)P引圓的兩條切線PA,PB及一條割線PCD,A、B為切點(diǎn).求證:ACBC=ADBD.

答案:證明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得證.8.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()

A.

B.

C.0

D.1答案:A9.已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為15,求此拋物線方程.答案:由題意可設(shè)拋物線的方程y2=2px(p≠0),直線與拋物線交與A(x1,y1),B(x2,y2)聯(lián)立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0則x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2

]=5(12p-1)2-5=15解得p=6或p=-2∴拋物線的方程為y2=12x或y2=-4x10.已知向量=(1,1,-2),=(2,1,),若≥0,則實(shí)數(shù)x的取值范圍為()

A.(0,)

B.(0,]

C.(-∞,0)∪[,+∞)

D.(-∞,0]∪[,+∞)答案:C11.在極坐標(biāo)系中,已知點(diǎn)P(2,),則過點(diǎn)P且平行于極軸的直線的方程是()

A.ρsinθ=1

B.ρsinθ=

C.ρcosθ=1

D.ρcosθ=答案:A12.用秦九韶算法求多項(xiàng)式f(x)=8x7+5x6+3x4+2x+1,當(dāng)x=2時(shí)的值.答案:根據(jù)秦九韶算法,把多項(xiàng)式改寫成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當(dāng)x=2時(shí),多項(xiàng)式的值為1397.13.已知G是△ABC的重心,O是平面ABC外的一點(diǎn),若λOG=OA+OB+OC,則λ=______.答案:如圖,正方體中,OA+OB+OC=OD=3OG,∴λ=3.故為3.14.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一個(gè)動(dòng)點(diǎn),F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p15.(理)

設(shè)O為坐標(biāo)原點(diǎn),向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),則當(dāng)QA?QB取得最小值時(shí),點(diǎn)Q的坐標(biāo)為______.答案:∵OP=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),設(shè)OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)則QA?QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得當(dāng)λ=43時(shí),QA?QB取得最小值.此時(shí)Q的坐標(biāo)為(43,43,83)故為:(43,43,83)16.為了調(diào)查上海市中學(xué)生的身體狀況,在甲、乙兩所學(xué)校中各隨意抽取了

100名學(xué)生,測(cè)試引體向上,結(jié)果如下表所示:

(1)甲乙兩校被測(cè)學(xué)生引體向上的平均數(shù)分別是:甲校______個(gè),乙校______個(gè).

(2)若5個(gè)以下(不含5個(gè))為不合格,則甲乙兩校的合格率分別為甲校______

乙校______

(3)若15個(gè)以上(含15個(gè))為優(yōu)秀,則甲乙兩校中優(yōu)秀率______校較高(填“甲”或“乙”)

(4)用你所學(xué)的統(tǒng)計(jì)知識(shí)對(duì)兩所學(xué)校學(xué)生的身體狀況作一個(gè)比較.你的結(jié)論是______.答案:(1)甲校被測(cè)學(xué)生引體向上的平均數(shù)是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被測(cè)學(xué)生引體向上的平均數(shù)是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中優(yōu)秀率=9+6100×100%=15%,乙校中優(yōu)秀率=8+6100×100%=14%,所以甲校較高;(4)雖然合格率相等,但是乙校平均數(shù)更高一些,所以乙校更好一些.故為:8.3,9.19,94%,94%,乙校更好一些17.若F1、F2是橢圓x24+y2=1的左、右兩個(gè)焦點(diǎn),M是橢圓上的動(dòng)點(diǎn),則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個(gè)焦點(diǎn),M是橢圓上的動(dòng)點(diǎn),∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.18.5本不同的書全部分給3個(gè)學(xué)生,每人至少一本,共有()種分法.

A.60

B.150

C.300

D.210答案:B19.(選做題)(幾何證明選講選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點(diǎn)D,AD=2,則∠C的大小為______.答案:∵∠B=90°,AB=4,BC為圓的直徑∴AB與圓相切,由切割線定理得,AB2=AD?AC∴AC=8故∠C=30°故為:30°20.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi),任取2個(gè)球,那么下面互斥而不對(duì)立的兩個(gè)事件是()

A.恰有1個(gè)白球;恰有2個(gè)白球

B.至少有1個(gè)白球;都是白球

C.至少有1個(gè)白球;

至少有1個(gè)紅球

D.至少有1個(gè)白球;

都是紅球答案:A21.某學(xué)校為了了解學(xué)生的日平均睡眠時(shí)間(單位:h),隨機(jī)選擇了n名同學(xué)進(jìn)行調(diào)查,下表是這n名同學(xué)的日平均睡眠時(shí)間的頻率分布表:

序號(hào)(i)分組(睡眠時(shí)間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;

(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如[4,5)的中點(diǎn)值4.5)作為代表.若據(jù)此計(jì)算的這n名學(xué)生的日平均睡眠時(shí)間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時(shí)間為:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)22.已知實(shí)數(shù)a,b滿足等式2a=3b,下列五個(gè)關(guān)系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;

⑤a=b.其中可能成立的關(guān)系式有()

A.①②③

B.①②⑤

C.①③⑤

D.③④⑤答案:B23.先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b.

(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;

(2)將a,b,5的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形的概率.答案:(1)先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b,事件總數(shù)為6×6=36.∵直線ax+by+c=0與圓x2+y2=1相切的充要條件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.∴直線ax+by+c=0與圓x2+y2=1相切的概率是236=118(2)先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b,事件總數(shù)為6×6=36.∵三角形的一邊長(zhǎng)為5∴當(dāng)a=1時(shí),b=5,(1,5,5)1種當(dāng)a=2時(shí),b=5,(2,5,5)1種當(dāng)a=3時(shí),b=3,5,(3,3,5),(3,5,5)2種當(dāng)a=4時(shí),b=4,5,(4,4,5),(4,5,5)2種當(dāng)a=5時(shí),b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6種當(dāng)a=6時(shí),b=5,6,(6,5,5),(6,6,5)2種故滿足條件的不同情況共有14種故三條線段能圍成不同的等腰三角形的概率為1436=718.24.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),則k的值為?

(2)若α∈N,又三點(diǎn)A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點(diǎn)為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點(diǎn)共線,說明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=225.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是[

]

A.4

B.-4

C.-5

D.6答案:A26.讀下面的程序:

上面的程序在執(zhí)行時(shí)如果輸入6,那么輸出的結(jié)果為()

A.6

B.720

C.120

D.1答案:B27.已知隨機(jī)變量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,則a的值為()

A.5

B.6

C.7

D.8答案:C28.已知兩個(gè)非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(duì)(A,B)個(gè)數(shù)為7若A={1,2,}或{1,3}或{2,3}時(shí),集合B中至少有一個(gè)元素,故每種情況下,B都有4種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為4×3=12若A={1}或{3}或{2}時(shí)集合中至少有二個(gè)元素,故每種情況下,B都有2種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為2×3=6綜上,符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是7+12+6=25故選C29.已知m2+n2=1,a2+b2=2,則am+bn的最大值是()

A.1

B.

C.

D.以上都不對(duì)答案:C30.已知向量OC=(2,2),CA=(2cosa,2sina),則向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故選B.31.若雙曲線的焦點(diǎn)到其漸近線的距離等于實(shí)軸長(zhǎng),則該雙曲線的離心率為()

A.5

B.

C.2

D.答案:B32.兩直線3x+y-3=0與6x+my+1=0平行,則它們之間的距離為()

A.4

B.

C.

D.答案:D33.在區(qū)間[-1,1]上任取兩個(gè)數(shù)s和t,則關(guān)于x的方程x2+sx+t=0的兩根都是正數(shù)的概率是[

]A.

B.

C.

D.答案:A34.探測(cè)某片森林知道,可采伐的木材有10萬立方米.設(shè)森林可采伐木材的年平均增長(zhǎng)率為8%,則經(jīng)過______年,可采伐的木材增加到40萬立方米.答案:設(shè)經(jīng)過n年可采伐本材達(dá)到40萬立方米則有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即經(jīng)過19年,可采伐的木材增加到40萬立方米故為1935.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域?yàn)閤>0,又函數(shù)f(x)=log2x定義域x>0,故選A.36.在平行四邊形ABCD中,等于()

A.

B.

C.

D.答案:C37.已知點(diǎn)P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()

A.

B.3

C.

D.答案:A38.用行列式討論關(guān)于x,y

的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)39.拋擲甲、乙兩骰子,記事件A:“甲骰子的點(diǎn)數(shù)為奇數(shù)”;事件B:“乙骰子的點(diǎn)數(shù)為偶數(shù)”,則P(B|A)的值等于()

A.

B.

C.

D.答案:B40.利用計(jì)算機(jī)隨機(jī)模擬方法計(jì)算y=x2與y=4所圍成的區(qū)域Ω的面積時(shí),可以先運(yùn)行以下算法步驟:

第一步:利用計(jì)算機(jī)產(chǎn)生兩個(gè)在[0,1]區(qū)間內(nèi)的均勻隨機(jī)數(shù)a,b;

第二步:對(duì)隨機(jī)數(shù)a,b實(shí)施變換:答案:根據(jù)題意可得,點(diǎn)落在y=x2與y=4所圍成的區(qū)域Ω的點(diǎn)的概率是100-34100=66100,矩形的面積為4×4=16,陰影部分的面積為S,則有S16=66100,∴S=10.56.故為:10.56.41.已知直線過點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(

A.l是方程|x|=2的曲線

B.|x|=2是l的方程

C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解

D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C42.設(shè)全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.43.命題“對(duì)于正數(shù)a,若a>1,則lg

a>0”及其逆命題、否命題、逆否命題四種命題中真命題的個(gè)數(shù)為()A.0B.1C.2D.4答案:原命題“對(duì)于正數(shù)a,若a>1,則lga>0”是真命題;逆命題“對(duì)于正數(shù)a,若lga>0,則a>1”是真命題;否命題“對(duì)于正數(shù)a,若a≤1,則lga≤0”是真命題;逆否命題“對(duì)于正數(shù)a,若lga≤0,則a≤1”是真命題.故選D.44.等于()

A.

B.

C.

D.答案:B45.已知直線經(jīng)過點(diǎn)A(0,4)和點(diǎn)B(1,2),則直線AB的斜率為()

A.3

B.-2

C.2

D.不存在答案:B46.已知a>0,b>0且a+b>2,求證:1+ba,1+ab中至少有一個(gè)小于2.答案:證明:假設(shè)1+ba,1+ab都不小于2,則1+ba≥2,1+ab≥2(6分)因?yàn)閍>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,這與已知a+b>2相矛盾,故假設(shè)不成立(12分)綜上1+ba,1+ab中至少有一個(gè)小于2.(14分)47.棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,BC1與

B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.48.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點(diǎn),已知燈口直徑是60

cm,燈深40

cm,則光源到反射鏡頂點(diǎn)的距離是

______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(diǎn)(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點(diǎn)的距離為458cm.49.語句“若a>b,則a+c>b+c”是()

A.不是命題

B.真命題

C.假命題

D.不能判斷真假答案:B50.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A第3卷一.綜合題(共50題)1.設(shè)雙曲線x2a2-y2b2=1(a>b>0)的半焦距為c,直線l過(a,0),(0,b)兩點(diǎn),已知原點(diǎn)到直線l的距離為34c,則雙曲線的離心率為______.答案:∵直線l過(a,0),(0,b)兩點(diǎn),∴直線l的方程為:xa+yb=1,即bx+ay-ab=0,∵原點(diǎn)到直線l的距離為34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴離心率為e=2或e=233;故為2或233.2.已知兩曲線參數(shù)方程分別為x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它們的交點(diǎn)坐標(biāo)為______.答案:曲線參數(shù)方程x=5cosθy=sinθ(0≤θ<π)的直角坐標(biāo)方程為:x25+y2=1;曲線x=54t2y=t(t∈R)的普通方程為:y2=45x;解方程組:x25+y2=1y2=45x得:x=1y=255∴它們的交點(diǎn)坐標(biāo)為(1,255).故為:(1,255).3.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小,則實(shí)數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實(shí)數(shù)a的取值范圍為(-2,1)故為:(-2,1)4.一個(gè)口袋中有紅球3個(gè),白球4個(gè).

(Ⅰ)從中不放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),求恰好第2次中獎(jiǎng)的概率;

(Ⅱ)從中有放回地摸球,每次摸2個(gè),摸到的2個(gè)球中至少有1個(gè)紅球則中獎(jiǎng),連續(xù)摸4次,求中獎(jiǎng)次數(shù)X的數(shù)學(xué)期望E(X).答案:(I)“恰好第2次中獎(jiǎng)“即為“第一次摸到的2個(gè)白球,第二次至少有1個(gè)紅球”,其概率為C24C27×C23+C13C12C25=935;(II)摸一次中獎(jiǎng)的概率為p=C23+C13C14C27=57,由條件知X~B(4,p),∴EX=np=4×57=207.5.設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試求實(shí)數(shù)m的取值范圍,使得:

(1)z是純虛數(shù);

(2)z是實(shí)數(shù);

(3)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是純虛數(shù),則可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是實(shí)數(shù),則可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i對(duì)應(yīng)的點(diǎn)坐標(biāo)為(lg(m2-2m-2),m2+3m+2)∴若該對(duì)應(yīng)點(diǎn)位于復(fù)平面的第二象限,則可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)6.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點(diǎn)是()

A.A,B,C

B.A,B,D

C.A,C,D

D.B,C,D答案:C7.已知向量a與b的夾角為60°,且|a|=1,|b|=2,那么(a+b)2的值為______.答案:由題意可得a?b=|a|?|b|cos<a

,

b>=1×2×cos60°=1.∴(a+b)2=a2+b2+2a?b=1+4+2×1=7.故為:7.8.方程組的解集是(

)答案:{(5,-4)}9.10件產(chǎn)品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.10.到兩定點(diǎn)A(0,0),B(3,4)距離之和為5的點(diǎn)的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無軌跡答案:C11.某市為研究市區(qū)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖(如圖).

(Ⅰ)求月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù);

(Ⅱ)估計(jì)被調(diào)查者月收入的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù)1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估計(jì)被調(diào)查者月收入的平均數(shù)為240012.已知圓C的極坐標(biāo)方程是ρ=2sinθ,那么該圓的直角坐標(biāo)方程為

______,半徑長(zhǎng)是

______.答案:把極坐標(biāo)方程是ρ=2sinθ的兩邊同時(shí)乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.13.過拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A、B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線()

A.有且僅有一條

B.有且僅有兩條

C.有無窮多條

D.不存在答案:B14.若e1,e2是兩個(gè)不共線的向量,已知AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,若A,B,D三點(diǎn)共線,則k=______.答案:BD=CD-CB=(2e1-e2)-(e1+3e2)=2e1-4e2因?yàn)锳,B,D三點(diǎn)共線,所以AB=kBD,已知AB=2e1+ke2,BD=2e1-4e2所以k=-4故為:-415.在repeat語句的一般形式中有“until

A”,其中A是

(

)A.循環(huán)變量B.循環(huán)體C.終止條件D.終止條件為真答案:D解析:此題考查程序語句解:Until標(biāo)志著直到型循環(huán),直到終止條件為止,因此until后跟的是終止條件為真的語句.答案:D.16.下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費(fèi)用y(萬元)的幾組統(tǒng)計(jì)數(shù)據(jù):

x23456y2.23.85.56.57.0(1)請(qǐng)?jiān)诮o出的坐標(biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程

y=

bx+

a;

(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用為多少?

(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對(duì)應(yīng)的點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),在坐標(biāo)系描出點(diǎn),得到散點(diǎn)圖,(2)∵5i=1xi2=4+9+16+25+36=90

且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線為y=1.23x+0.08.(3)當(dāng)x=10時(shí),y=1.23×10+0.08=12.38,所以估計(jì)當(dāng)使用10年時(shí),維修費(fèi)用約為12.38萬元.17.用隨機(jī)數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是用隨機(jī)數(shù)表法從100名學(xué)生選一個(gè),共有100種結(jié)果,滿足條件的事件是抽取20個(gè),∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.18.在7塊并排、形狀大小相同的試驗(yàn)田上進(jìn)行施化肥量對(duì)水稻產(chǎn)量影響的試驗(yàn),得到如下表所示的一組數(shù)據(jù)(單位:kg).

(1)畫出散點(diǎn)圖;

(2)求y關(guān)于x的線性回歸方程;

(3)若施化肥量為38kg,其他情況不變,請(qǐng)預(yù)測(cè)水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點(diǎn)圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計(jì)算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預(yù)測(cè),施化肥量為38kg,其他情況不變時(shí),水稻的產(chǎn)量是438kg.19.袋子里有大小相同的3個(gè)紅球和4個(gè)黑球,今從袋子里隨機(jī)取球.

(Ⅰ)若有放回地取3次,每次取1個(gè)球,求取出1個(gè)紅球2個(gè)黑球的概率;

(Ⅱ)若無放回地取3次,每次取1個(gè)球,

①求在前2次都取出紅球的條件下,第3次取出黑球的概率;

②求取出的紅球數(shù)X

的分布列和數(shù)學(xué)期望.答案:(Ⅰ)記“取出1個(gè)紅球2個(gè)黑球”為事件A,根據(jù)題意有P(A)=C13(37)×(47)2=144343;

所以取出1個(gè)紅球2個(gè)黑球的概率是144343.(Ⅱ)①記“在前2次都取出紅球”為事件B,“第3次取出黑球”為事件C,則P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出紅球的條件下,第3次取出黑球的概率是45.②隨機(jī)變量X

的所有取值為0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列為:所以EX=0×435+1×1835+2×1235+3×135=4535=97.20.若非零向量滿足,則()

A.

B.

C.

D.答案:C21.為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均值都是s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均值都是t,那么下列說法正確的是()

A.l1和l2必定平行

B.l1與l2必定重合

C.l1和l2有交點(diǎn)(s,t)

D.l1與l2相交,但交點(diǎn)不一定是(s,t)答案:C22.設(shè)△ABC是邊長(zhǎng)為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長(zhǎng)為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+

2×12=3,故為:323.設(shè)z∈C,|z|≤2,則點(diǎn)Z表示的圖形是()A.直線x=2的左半平面B.半徑為2的圓面C.直線x=2的右半平面D.半徑為2的圓答案:由題意z∈C,|z|≤2,由得數(shù)的幾何意義知,點(diǎn)Z表示的圖形是半徑為2的圓面,故選B24.參數(shù)方程(θ為參數(shù))化為普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D25.在平面直角坐標(biāo)系xOy中,已知拋物線關(guān)于x軸對(duì)稱,頂點(diǎn)在原點(diǎn)O,且過點(diǎn)P(2,4),則該拋物線的方程是______.答案:設(shè)所求拋物線方程為y2=ax,依題意42=2a∴a=8,故所求為y2=8x.故為:y2=8x26.在直角坐標(biāo)系中,畫出下列向量:

(1)|a|=2,a的方向與x軸正方向的夾角為60°,與y軸正方向的夾角為30°;

(2)|a|=4,a的方向與x軸正方向的夾角為30°,與y軸正方向的夾角為120°;

(3)|a|=42,a的方向與x軸正方向的夾角為135°,與y軸正方向的夾角為135°.答案:由題意作出向量a如右圖所示:(1)(2)(3)27.如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長(zhǎng)線于F,若AB=10,CD=8,則切線BF的長(zhǎng)是

______.答案:連接OD,AB⊥CD于E,根據(jù)垂徑定理得到DE=4,在直角△ODE中,根據(jù)勾股定理得到OE=3,因而AE=8,易證△ABF∽△AED,得到DEBF=AEAB=810,解得BF=5.28.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因?yàn)橹本€的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時(shí),斜率為負(fù)值,當(dāng)傾斜角大于0°小于90°時(shí)斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.29.下列命題中正確的是()

A.若,則

B.若,則

.若,則

D.若,則答案:C30.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當(dāng)a>1時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當(dāng)1>a>0時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得

a=12.綜上,a的值為12或32故選C.31.如果拋物線y2=a(x+1)的準(zhǔn)線方程是x=-3,那么這條拋物線的焦點(diǎn)坐標(biāo)是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:拋物線y2=a(x+1)可由拋物線y2=ax向左平移一個(gè)單位長(zhǎng)度得到,因?yàn)閽佄锞€y2=a(x+1)的準(zhǔn)線方程是x=-3,所以拋物線y2=ax的準(zhǔn)線方程是x=-2,且焦點(diǎn)坐標(biāo)為(2,0),那么拋物線y2=a(x+1)的焦點(diǎn)坐標(biāo)為(1,0).故選C.32.已知點(diǎn)P1的球坐標(biāo)是P1(4,,),P2的柱坐標(biāo)是P2(2,,1),則|P1P2|=()

A.

B.

C.

D.4答案:A33.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.34.在△ABC中,AB=2,AC=1,D為BC的中點(diǎn),則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.35.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論