2023年安徽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年安徽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年安徽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年安徽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年安徽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年安徽職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.滿足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點的軌跡是______.答案:|z|=5,即點Z到原點O的距離為5∴z所對應(yīng)點的軌跡為以(0,0)為圓心,5為半徑的圓.2.附加題(必做題)

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.

(1)設(shè)AD=λAB,異面直線AC1與CD所成角的余弦值為925,求λ的值;

(2)若點D是AB的中點,求二面角D-CB1-B的余弦值.答案:(1)以CA,CB,CC1分別為x,y,z軸建立如圖所示空間直角坐標,因為AC=3,BC=4,AA1=4,所以A(3,0,0),B(0,4,0),C(0,0,0),C1=(0,0,4),所以AC1=(-3,0,4),因為AD=λAB,所以點D(-3λ+3,4λ,0),所以CD=(-3λ+3,4λ,0),因為異面直線AC1與CD所成角的余弦值為925,所以|cos<AC1,CD>|=|9λ-9|5(3-3λ)2+16λ2=925,解得λ=12.…(4分)(2)由(1)得B1(0,4,4),因為

D是AB的中點,所以D(32,2,0),所以CD=(32,2,0),CB1=(0,4,4),平面CBB1C1的法向量

n1=(1,0,0),設(shè)平面DB1C的一個法向量n2=(x0,y0,z0),則n1,n2的夾角(或其補角)的大小就是二面角D-CB1-B的大小,由n2?CD=0n2?CB

1=0得32x0+2y0=04y0+4z0=0令x0=4,則y0=-3,z0=3,所以n2=(4,-3,3),∴cos<n1,n2>=n1?n2|n1|?|n2|=434=23417.所以二面角D-B1C-B的余弦值為23417.

…(10分)3.已知0<a<2,復(fù)數(shù)z的實部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.4.根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果a為______.答案:由題設(shè)循環(huán)體要執(zhí)行3次,圖知第一次循環(huán)結(jié)束后c=a+b=2,a=1.b=2,第二次循環(huán)結(jié)束后c=a+b=3,a=2.b=3,第三次循環(huán)結(jié)束后c=a+b=5,a=3.b=5,第四次循環(huán)結(jié)束后不滿足循環(huán)的條件是b<4,程序輸出的結(jié)果為3故為:3.5.分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的()

A.充分條件

B.必要條件

C.充要條件

D.等價條件答案:A6.設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()

A.若m∥n,m∥α,則n∥α

B.若α⊥β,m∥α,則m⊥β

C.若α⊥β,m⊥β,則m∥α

D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D7.方程.12

41x

x21-3

9.=0的解集為______.答案:.12

41x

x21-3

9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.8.設(shè)橢圓=1和x軸正方向的交點為A,和y軸的正方向的交點為B,P為第一象限內(nèi)橢圓上的點,使四邊形OAPB面積最大(O為原點),那么四邊形OAPB面積最大值為()

A.a(chǎn)b

B.ab

C.a(chǎn)b

D.2ab答案:B9.設(shè)ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現(xiàn)給出以下結(jié)論,其中你認為正確的是______.

①都大于1②都小于1③至少有一個不大于1④至多有一個不小于1⑤至少有一個不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對;若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對;由于③與①兩結(jié)論互否,故③對④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個的比值大于1是可以的,故不對⑤與②兩結(jié)論互否,故正確綜上③⑤兩結(jié)論正確故為③⑤10.若點(2,-2)在圓(x-a)2+(y-a)2=16的內(nèi)部,則實數(shù)a的取值范圍是()

A.-2<a<2

B.0<a<2

C.a(chǎn)<-2或a>2

D.a(chǎn)=±2答案:A11.寫出系數(shù)矩陣為1221,且解為xy=11的一個線性方程組是______.答案:由題意得:線性方程組為:x+2y=32x+y=3解之得:x=1y=1;故所求的一個線性方程組是x+2y=32x+y=3故為:x+2y=32x+y=3.12.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現(xiàn)有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數(shù)字作答).答案:由題意,首先給左上方一個涂色,有三種結(jié)果,再給最左下邊的上面的涂色,有兩種結(jié)果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結(jié)果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結(jié)果,∴根據(jù)分步計數(shù)原理得到共有3×2×(2+1)=18種結(jié)果,故為18.13.若|a|=3、|b|=4,且a⊥b,則|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故為:5.14.如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p、q分別是M到直線l1和l2的距離,則稱有序非負實數(shù)對(p,q)是點M的“距離坐標”.已知常數(shù)p≥0,q≥0,給出下列命題:

①若p=q=0,則“距離坐標”為(0,0)的點有且僅有1個;

②若pq=0,且p+q≠0,則“距離坐標”為(p,q)的點有且僅有2個;

③若pq≠0,則“距離坐標”為(p,q)的點有且僅有4個.

上述命題中,正確命題的個數(shù)是()A.0B.1C.2D.3答案:①正確,此點為點O;②不正確,注意到p,q為常數(shù),由p,q中必有一個為零,另一個非零,從而可知有且僅有4個點,這兩點在其中一條直線上,且到另一直線的距離為q(或p);③正確,四個交點為與直線l1相距為p的兩條平行線和與直線l2相距為q的兩條平行線的交點;故選C.15.一組數(shù)據(jù)12,15,24,25,31,31,36,36,37,39,44,49,50的中位數(shù)是()

A.31

B.36

C.35

D.34答案:B16.用數(shù)學(xué)歸納法證明:12+22+32+…+n2=n(n+1)(2n+1)6.答案:證明:(1)當(dāng)n=1時,左邊=12=1,右邊=1×2×36=1,等式成立.(4分)(2)假設(shè)當(dāng)n=k時,等式成立,即12+22+32+…+k2=k(k+1)(2k+1)6(6分)那么,當(dāng)n=k+1時,12+22+32+…+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6這就是說,當(dāng)n=k+1時等式也成立.(10分)根據(jù)(1)和(2),可知等式對任何n∈N*都成立.(12分)17.若函數(shù)f(x)對任意實數(shù)x都有f(x)<f(x+1),那么()A.f(x)是增函數(shù)B.f(x)沒有單調(diào)遞增區(qū)間C.f(x)沒有單調(diào)遞減區(qū)間D.f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間答案:根據(jù)函數(shù)f(x)對任意實數(shù)x都有f(x)<f(x+1),畫出一個滿足條件的函數(shù)圖象如右圖所示;根據(jù)圖象可知f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間故選D.18.某籃球運動員在一個賽季的40場比賽中的得分的莖葉圖如圖所示,則這組數(shù)據(jù)的中位數(shù)是______;眾數(shù)是______.

答案:將比賽中的得分按照從小到大的順序排,中間兩個數(shù)為23,23,所以這組數(shù)據(jù)的中位數(shù)是23,所有的數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)是23故為23;2319.用行列式討論關(guān)于x,y

的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時,D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時,D=0,Dx≠0,方程組無解;…(2分)(3)當(dāng)m=1時,D=Dx=Dy=0,方程組有無窮多組解,此時方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)20.直線ax+by=1與圓x2+y2=1有兩不同交點,則點P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點,∴1a2+b2<1即a2+b2>1.故為:點在圓外.21.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負時,由韋達定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根時,-1≤a≤178故為:-1≤a≤17822.將兩粒均勻的骰子各拋擲一次,觀察向上的點數(shù),計算:

(1)共有多少種不同的結(jié)果?并試著列舉出來.

(2)兩粒骰子點數(shù)之和等于3的倍數(shù)的概率;

(3)兩粒骰子點數(shù)之和為4或5的概率.答案:(1)每一粒均勻的骰子拋擲一次,都有6種結(jié)果,根據(jù)分步計數(shù)原理,所有可能結(jié)果共有6×6=36種.

…(4分)(2)兩粒骰子點數(shù)之和等于3的倍數(shù)的有以下12種:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12個結(jié)果,因此,兩粒骰子點數(shù)之和等于3的倍數(shù)的概率是1236=13.

…(8分)(3)兩粒骰子點數(shù)之和為4或5的有以下7種:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,兩粒骰子點數(shù)之和為4或5的概率為736.

…(12分)23.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是()

A.內(nèi)切

B.相交

C.外切

D.外離答案:B24.過P(-1,1),Q(3,9)兩點的直線的斜率為(

A.2

B.

C.4

D.答案:A25.有一矩形紙片ABCD,按圖所示方法進行任意折疊,使每次折疊后點B都落在邊AD上,將B的落點記為B′,其中EF為折痕,點F也可落在邊CD上,過B′作B′H∥CD交EF于點H,則點H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點H到定點B的距離以及到定直線AD的距離相等,根據(jù)拋物線的定義可知:點H的軌跡為:拋物線,(拋物線的一部分)故選D.26.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時,數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時,試比較an與n2+1的大小,證明你的結(jié)論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設(shè)數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當(dāng)n=1,2,3時,2n=n2-n+2,∴an=n2+1.當(dāng)n≥4時,猜想2n>n2-n+2,證明如下:當(dāng)n=4時,顯然2k>k2-4+2假設(shè)當(dāng)n=k≥4時,猜想成立,即2k>k2-k+2,則當(dāng)n=k+1時,2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當(dāng)n≥4時,猜想2n>n2-n+2成立,∴當(dāng)n≥4時,an>n2+1.27.一圓臺上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點M,拉一條繩子,繞圓臺的側(cè)面一周轉(zhuǎn)到B點,則這條繩子最短長為______cm.答案:畫出圓臺的側(cè)面展開圖,并還原成圓錐展開的扇形,且設(shè)扇形的圓心為O.有圖得:所求的最短距離是MB',設(shè)OA=R,圓心角是α,則由題意知,10π=αR

①,20π=α(20+R)

②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,則MB'=50cm.故為:50cm.28.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關(guān)系為

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.29.(坐標系與參數(shù)方程選做題)點P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點的最短距離為______.答案:設(shè)點Q(t2,2t)為曲線上的任意一點,則|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,當(dāng)且僅當(dāng)t=0取等號,此時Q(0,0).故點P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點的最短距離為3.故為3.30.在等腰直角三角形ABC中,若M是斜邊AB上的點,則AM小于AC的概率為()A.14B.12C.22D.32答案:記“AM小于AC”為事件E.在線段AB上截取,則當(dāng)點M位于線段AC內(nèi)時,AM小于AC,將線段AB看做區(qū)域D,線段AC看做區(qū)域d,于是AM小于AC的概率為:ACAB=22.故選C.31.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整數(shù)值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整數(shù)指數(shù)函數(shù)在底數(shù)大于1時單調(diào)遞增的性質(zhì),得2x>x+8,即x>8,∴使此不等式成立的x的最小整數(shù)值為9.故為:9.32.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.

①m×m,②m×n,③n×m,④n×n.答案:兩個矩陣只有當(dāng)前一個矩陣的列數(shù)與后一個矩陣的行數(shù)相等時,才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④33.命題“三角形中最多只有一個內(nèi)角是直角”的結(jié)論的否定是()

A.有兩個內(nèi)角是直角

B.有三個內(nèi)角是直角

C.至少有兩個內(nèi)角是直角

D.沒有一個內(nèi)角是直角答案:C34.已知△ABC三個頂點的坐標為A(1,3)、B(-1,-1)、C(-3,5),求這個三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個三角形外接圓的方程為(x+2)2+(y-2)2=10.35.過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(0,2)在圓x2+y2=4上,∴過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是0x+2y=4,即y=2.故為:y=2.36.△ABC中,A(1,2),B(3,1),重心G(3,2),則C點坐標為______.答案:設(shè)點C(x,y)由重心坐標公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故點C的坐標為(5,3)故為(5,3)37.設(shè)xi,yi

(i=1,2,…,n)是實數(shù),且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個排列.求證:n

i-1(xi-yi)2≥n

i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證

ni=1

yi2-2ni=1

xi?yi≥ni=1

zi2-2ni=1

xi?zi,由于ni=1

yi2=ni=1

zi2,故只需證ni=1

xi?zi≤ni=1

xi?yi

①.而①的左邊為亂序和,右邊為順序和,根據(jù)排序不等式可得①成立,故要證的不等式成立.38.用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面向上的次數(shù)為ξ;乙拋擲3次,記正面向上的次數(shù)為η.

(Ⅰ)分別求ξ和η的期望;

(Ⅱ)規(guī)定:若ξ>η,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.答案:(Ⅰ)由題意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲獲勝有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3則甲獲勝的概率為P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)39.下面是一個算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當(dāng)x≤5時,y=10x=10,得x=1;當(dāng)x>5時,y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.40.OA、OB(O為原點)是圓x2+y2=2的兩條互相垂直的半徑,C是該圓上任一點,且OC=λOA+μOB,則λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故為:141.一個家庭有兩個小孩,假設(shè)生男生女是等可能的,已知這個家庭有一個是女孩的條件下,這時另一個也是女孩的概率是()

A.

B.

C.

D.答案:D42.已知雙曲線的兩個焦點為F1(-,0),F2(,0),P是此雙曲線上的一點,且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()

A.

B.

C.

D.答案:C43.若直線y=x+b與圓x2+y2=2相切,則b的值為(

A.±4

B.±2

C.±

D.±2

答案:B44.對變量x,y

有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v

有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負相關(guān)

D.變量x

與y

負相關(guān),u

與v

負相關(guān)答案:B45.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故選D.46.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設(shè)命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.47.設(shè)直線y=kx與橢圓x24+y23=1相交于A、B兩點,分別過A、B向x軸作垂線,若垂足恰為橢圓的兩個焦點,則k等于()A.±32B.±23C.±12D.±2答案:將直線與橢圓方程聯(lián)立,y=kxx24+y23=1,化簡整理得(3+4k2)x2=12(*)因為分別過A、B向x軸作垂線,垂足恰為橢圓的兩個焦點,故方程的兩個根為±1.代入方程(*),得k=±32故選A.48.若直線l過拋物線y=ax2(a>0)的焦點,并且與y軸垂直,若l被拋物線截得的線段長為4,則a=______.答案:拋物線方程整理得x2=1ay,焦點(0,14a)l被拋物線截得的線段長即為通徑長1a,故1a=4,a=14;故為14.49.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1則y=2×2+1=5,那么集合A中元素2在B中的象是5故選B.50.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是(

A.

B.

C.

D.答案:B第2卷一.綜合題(共50題)1.有四條線段,其長度分別為2,3,4,5,現(xiàn)從中任取三條,則以這三條線段為邊可以構(gòu)成三角形的概率是______.答案:所有的取法共有C34=4種,三條線段構(gòu)成三角形的條件是任意兩邊之和大于第三邊,其中能夠成三角形的取法有①2、3、4;②2、4、5;③3、4、5,共有3種,故這三條線段為邊可以構(gòu)成三角形的概率是34,故為34.2.一個總體中有100個個體,隨機編號為0,1,2,3,…,99,依編號順序平均分成10個小組,組號依次為1,2,3,…10.現(xiàn)用系統(tǒng)抽樣方法抽取一個容量為10的樣本,規(guī)定如果在第1組隨機抽取的號碼為m,那么在第k組中抽取的號碼個位數(shù)字與m+k號碼的個位數(shù)字相同,若m=6,則在第7組中抽取的號碼是()

A.66

B.76

C.63

D.73答案:C3.由直角△ABC勾上一點D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項,又為ED和EF的比例中項.

答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因為EG為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項.4.H:x-y+z=2為坐標空間中一平面,L為平面H上的一直線.已知點P(2,1,1)為L上距離原點O最近的點,則______為L的方向向量.答案:∵x-y+z=2為坐標空間中一平面∴平面的一個法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點O最近的點,∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)5.用樣本估計總體,下列說法正確的是()A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計就越精確C.樣本容量越小,估計就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計總體時,樣本容量越大,估計就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標準差可以近似地反映總體的波動狀態(tài),數(shù)據(jù)的方差越大,說明數(shù)據(jù)越不穩(wěn)定,樣本的結(jié)果可以粗略的估計總體的結(jié)果,但不就是總體的結(jié)果.故選B.6.已知點P是以F1、F2為左、右焦點的雙曲線(a>0,b>0)左支上一點,且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()

A.

B.

C.

D.答案:D7.若橢圓長軸長與短軸長之比為2,它的一個焦點是(215,0),則橢圓的標準方程是______.答案:由題設(shè)條件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴橢圓的標準方程是x280+y220=1.故為:x280+y220=1.8.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過點F作FM∥AC、FN∥AB,分別交AB、AC于點M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據(jù)平面向量基本定理,可得x=13,y=12故選:A9.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,則

k=______.答案:因為已知x2+4y2+kz2=36根據(jù)柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故為:9.10.類比“等差數(shù)列的定義”給出一個新數(shù)列“等和數(shù)列的定義”是()A.連續(xù)兩項的和相等的數(shù)列叫等和數(shù)列B.從第一項起,以后每一項與前一項的和都相等的數(shù)列叫等和數(shù)列C.從第二項起,以后每一項與前一項的差都不相等的數(shù)列叫等和數(shù)列D.從第二項起,以后每一項與前一項的和都相等的數(shù)列叫等和數(shù)列答案:由等差數(shù)列的定義:從第二項起,以后每一項與前一項的差都相等的數(shù)列叫等差數(shù)列類比可得:從第二項起,以后每一項與前一項的和都相等的數(shù)列叫等和數(shù)列故選D11.直線3x+4y-7=0與直線6x+8y+3=0之間的距離是()

A.

B.2

C.

D.答案:C12.設(shè)四邊形ABCD中,有且,則這個四邊形是()

A.平行四邊形

B.矩形

C.等腰梯形

D.菱形答案:C13.設(shè)橢圓的左焦點為F,AB為橢圓中過點F的弦,試分析以AB為直徑的圓與橢圓的左準線的位置關(guān)系.答案:設(shè)M為弦AB的中點(即以AB為直徑的圓的圓心),A1、B1、M1分別是A、B、M在準線l上的射影(如圖).由圓錐曲線的共同性質(zhì)得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.∵0<e<1,∴|AB|<2|MM1|,即|AB|2<|MM1|.∴以AB為直徑的圓與左準線相離.14.已知方程x2-6x+a=0的兩個不等實根均大于2,則實數(shù)a的取值范圍為()

A.[4,9)

B.(4,9]

C.(4,9)

D.(8,9)答案:D15.中,是邊上的中線(如圖).

求證:.

答案:證明見解析解析:取線段所在的直線為軸,點為原點建立直角坐標系.設(shè)點的坐標為,點的坐標為,則點的坐標為.可得,,,.,..16.若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標,則點P落在圓x2+y2=16內(nèi)的概率是______.答案:由題意知,本題是一個古典概型,試驗發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標,共有6×6=36種結(jié)果,而滿足條件的事件是點P落在圓x2+y2=16內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式得到P=836=29,故為:2917.某校高三年級舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒有被排在一起的演講的順序”可通過如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個對象與其它班的5位同學(xué)共6個對象排成一列,有A66種方法;③在以上6個對象所排成一列的7個間隙(包括兩端的位置)中選2個位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號相連),而二班的2位同學(xué)沒有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.18.隨機變量ξ的分布列為k=1、2、3、4,c為常數(shù),則P(<ξ<)的值為()

A.

B.

C.

D.答案:B19.如圖,梯形ABCD內(nèi)接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是

______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故為:60°20.擲一顆均勻的骰子,若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結(jié)果只有2種:出現(xiàn)奇數(shù)點、出現(xiàn)偶數(shù)點.若隨機事件A表示“出現(xiàn)奇數(shù)點”,則A的對立事件B表示:“出現(xiàn)偶數(shù)點”,故為出現(xiàn)偶數(shù)點.21.已知,,那么P(B|A)等于()

A.

B.

C.

D.答案:B22.如圖所示,已知A、B、C三點不共線,O為平面ABC外的一點,若點M滿足

(1)判斷三個向量是否共面;

(2)判斷點M是否在平面ABC內(nèi).答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三個向量的基線又有公共點M,∴M、A、B、C共面,即點M在平面ABC內(nèi),23.一個樣本a,99,b,101,c中五個數(shù)恰成等差數(shù)列,則這個樣本的極差與標準差分別為(

)。答案:4;24.用“輾轉(zhuǎn)相除法”求得和的最大公約數(shù)是(

)A.B.C.D.答案:D解析:是和的最大公約數(shù),也就是和的最大公約數(shù)25.如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出

(1)圖中與EF、CO共線的向量;

(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點可知,CE=EA,即與EA相等的向量為CE;26.已知點A(1,2),直線l1:x=1+3ty=2-4t(t為參數(shù))與直線l2:2x-4y=5相交于點B,則A、B兩點之間的距離|AB|=______.答案:將x=1+3t,y=2-4t代入2x-4y=5,得t=12,所以兩直線的交點坐標為(52,0)所以|AB|=(1-52)2+(2-0)2

=52.故為:5227.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個數(shù)為______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個數(shù)為8.故為:828.下面是一個算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當(dāng)x≤5時,y=10x=10,得x=1;當(dāng)x>5時,y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.29.長方體的長、寬、高之比是1:2:3,對角線長是214,則長方體的體積是

______.答案:長方體的長、寬、高之比是1:2:3,所以長方體的長、寬、高是x:2x:3x,對角線長是214,所以,x2+(2x)2+(3x)2=(214)2,x=2,長方體的長、寬、高是2,4,6;長方體的體積是:2×4×6=48故為:4830.設(shè)α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根,當(dāng)m為何值時,α2+β2有最小值?并求出這個最小值.答案:若α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根則△=16m2-16(m+2)≥0,即m≤-1,或m≥2則α+β=m,α×β=m+24,則α2+β2=(α+β)2-2αβ=m2-2×m+24=m2-12m-1=(m-14)2-1716∴當(dāng)m=-1時,α2+β2有最小值,最小值是12.31.若一個底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如下圖所示,則這個棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個三棱柱,棱柱的高是4,底面正三角形的高是33,設(shè)底面邊長為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B32.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復(fù)數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.33.數(shù)列{an}滿足a1=1且an+1=(1+1n2+n)an+12n(n≥1).

(Ⅰ)用數(shù)學(xué)歸納法證明:an≥2(n≥2);

(Ⅱ)已知不等式ln(1+x)<x對x>0成立,證明:an<e2(n≥1),其中無理數(shù)e=2.71828….答案:(Ⅰ)證明:①當(dāng)n=2時,a2=2≥2,不等式成立.②假設(shè)當(dāng)n=k(k≥2)時不等式成立,即ak≥2(k≥2),那么ak+1=(1+1k(k+1))ak+12k≥2.這就是說,當(dāng)n=k+1時不等式成立.根據(jù)(1)、(2)可知:ak≥2對所有n≥2成立.(Ⅱ)由遞推公式及(Ⅰ)的結(jié)論有an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n)an(n≥1)兩邊取對數(shù)并利用已知不等式得lnan+1≤ln(1+1n2+n+12n)+lnan≤lnan+1n2+n+12n故lnan+1-lnan≤1n(n+1)+12n(n≥1).上式從1到n-1求和可得lnan-lna1≤11×2+12×3+…+1(n-1)n+12+122+…+12n-1=1-12+(12-13)+…+1n-1-1n+12?1-12n1-12=1-1n+1-12n<2即lnan<2,故an<e2(n≥1).34.某校為了研究學(xué)生的性別和對待某一活動的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運用2×2列聯(lián)表進行獨立性檢驗,經(jīng)計算K2=7.069,則所得到的統(tǒng)計學(xué)結(jié)論是:有()的把握認為“學(xué)生性別與支持該活動有關(guān)系”.

P(k2≥k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

A.0.1%

B.1%

C.99%

D.99.9%答案:C35.已知直線ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為三邊長的三角形()

A.是銳角三角形

B.是鈍角三角形

C.是直角三角形

D.不存在答案:C36.設(shè)F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內(nèi),若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F(xiàn)2為端點的線段.故選D.37.對于一組數(shù)據(jù)的兩個函數(shù)模型,其殘差平方和分別為153.4

和200,若從中選取一個擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.38.已知關(guān)于x的方程2kx2-2x-3k-2=0的兩實根一個小于1,另一個大于1,求實數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實根一個小于1,另一個大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.39.已知△ABC的頂點坐標分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()

A.2

B.6+

C.3+2

D.6+3答案:D40.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(

)。答案:圓,雙曲線41.函數(shù)y=()|x|的圖象是()

A.

B.

C.

D.

答案:B42.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()

A.是圓心

B.在圓上

C.在圓內(nèi)

D.在圓外答案:C43.若關(guān)于x的一元二次實系數(shù)方程x2+px+q=0有一個根為1+i(i是虛數(shù)單位),則p+q的值是()

A.-1

B.0

C.2

D.-2答案:B44.下面五個命題:(1)所有的單位向量相等;(2)長度不等且方向相反的兩個向量不一定是共線向量;(3)由于零向量的方向不確定,故0與任何向量不平行;(4)對于任何向量a,b,必有|a+b|≤|a|+|b|.其中正確命題的序號為:______.答案:(1)單位向量指模為1的向量,方向可為任意的,故錯誤;(2)由共線向量的定義,方向相反的兩個向量一定是共線向量,故錯誤;(3)規(guī)定:零向量與任何向量為平行向量,故錯誤;(4)因為|a+b|2=a2+b2+2a?b≤a2+b2+2|a|?|b|=(|a|+|b|)2,故正確故為:(4)45.若方程Ax+By+C=0表示與兩條坐標軸都相交的直線,則()

A.A≠0B≠0C≠0

B.A≠0B≠0

C.B≠0C≠0

D.A≠0C≠0答案:B46.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實根,且一個大于4,一個小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。47.從1,2,3,4,5,6,7這七個數(shù)字中任取兩個奇數(shù)和兩個偶數(shù),組成沒有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)的個數(shù)為()

A.432

B.288

C.216

D.108答案:C48.已知函數(shù)f(x)=2x,x≤1log13x,x>1,若f(a)=2,則a=______.答案:當(dāng)a≤1時y=2x∴2a=2∴a=1當(dāng)a>1時y=log13x∴2=loga13∴a=19不成立所以a=1故為:149.已知三個數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序為______.答案:因為a=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.50.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a

(a+b)=a2+

a

b=1+1×2cos120°=0,所以a⊥c.故選A.第3卷一.綜合題(共50題)1.用行列式討論關(guān)于x,y

的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時,D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時,D=0,Dx≠0,方程組無解;…(2分)(3)當(dāng)m=1時,D=Dx=Dy=0,方程組有無窮多組解,此時方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)2.如圖,平面內(nèi)有三個向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長為2和4,λ+μ=2+4=6.故為6.3.附加題選做題B.(矩陣與變換)

設(shè)矩陣A=m00n,若矩陣A的屬于特征值1的一個特征向量為10,屬于特征值2的一個特征向量為01,求實數(shù)m,n的值.答案:由題意得m00n10=110,m00n01=201,…6分化簡得m=10?n=00?m=0n=2所以m=1n=2.…10分4.已知矩陣A=abcd,若矩陣A屬于特征值3的一個特征向量為α1=11,屬于特征值-1的一個特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.5.已知平面向量.a,b的夾角為60°,.a=(3,1),|b|=1,則|.a+2b|=______.答案:∵平面向量.a,b的夾角為60°,.a=(3,1),∴|.a|=2.b2

再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故為23.6.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點,在以A、B、C、D、E、F為端點的有向線段中所表示的向量中,

(1)與向量FE共線的有

______.

(2)與向量DF的模相等的有

______.

(3)與向量ED相等的有

______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.7.點(1,2)到原點的距離為()

A.1

B.5

C.

D.2答案:C8.l1,l2,l3是空間三條不同的直線,則下列命題正確的是[

]A.l1⊥l2,l2⊥l3l1∥l3

B.l1⊥l2,l2∥l3l1⊥l3

C.l1∥l2∥l3l1,l2,l3共面

D.l1,l2,l3共點l1,l2,l3共面答案:B9.一個口袋內(nèi)有4個不同的紅球,6個不同的白球,

(1)從中任取4個球,紅球的個數(shù)不比白球少的取法有多少種?

(2)若取一個紅球記2分,取一個白球記1分,從中任取5個球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個分類計數(shù)問題,將取出4個球分成三類情況取4個紅球,沒有白球,有C44種取3個紅球1個白球,有C43C61種;取2個紅球2個白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個紅球,y個白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種10.復(fù)數(shù),且A+B=0,則m的值是()

A.

B.

C.-

D.2答案:C11.若非零向量滿足,則()

A.

B.

C.

D.答案:C12.設(shè)F1、F2分別是橢圓x225+y216=1的左、右焦點,P為橢圓上一點,M是F1P的中點,|OM|=3,則P點到橢圓左焦點距離為______.答案:由題意知,OM是三角形PF1P的中位線,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故為4.13.畫出《數(shù)學(xué)3》第一章“算法初步”的知識結(jié)構(gòu)圖.答案:《數(shù)學(xué)3》第一章“算法初步”的知識包括:算法、程序框圖、算法的三種基本邏輯結(jié)構(gòu)和框圖表示、基本算法語句.算法的三種基本邏輯結(jié)構(gòu)和框圖表示就是順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),基本算法語句是指輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.故《數(shù)學(xué)3》第一章“算法初步”的知識結(jié)構(gòu)圖示意圖如下:14.如圖,圓周上按順時針方向標有1,2,3,4,5五個點.一只青蛙按順時針方向繞圓從一個點跳到另一個點,若它停在奇數(shù)點上,則下次只能跳一個點;若停在偶數(shù)點上,則跳兩個點.該青蛙從“5”這點起跳,經(jīng)2

011次跳后它停在的點對應(yīng)的數(shù)字是______.答案:起始點為5,按照規(guī)則,跳一次到1,再到2,4,1,2,4,1,2,4,…,“1,2,4”循環(huán)出現(xiàn),而2011=3×670+1.故經(jīng)2011次跳后停在的點是1.故為115.命題“若ab=0,則a、b中至少有一個為零”的逆否命題是

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:若a≠0,且b≠0,則ab≠0.16.點O是△ABC內(nèi)一點,若+=-,則是S△AOB:S△AOC=()

A.1

B.

C.

D.答案:A17.設(shè)雙曲線的焦點在x軸上,兩條漸近線為y=±12x,則雙曲線的離心率e=______.答案:依題意可知ba=12,求得a=2b∴c=a2+b2=5b∴e=ca=52故為52.18.過點P(2,3)且以a=(1,3)為方向向量的直線l的方程為______.答案:設(shè)直線l的另一個方向向量為a=(1,k),其中k是直線的斜率可得a=(1,3)與a=(1,k)互相平行∴11=k3?k=3,所以直線l的點斜式方程為:y-3=3(x-2)化成一般式:3x-y-3=0故為:3x-y-3=0.19.對變量x,y

有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v

有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負相關(guān)

D.變量x

與y

負相關(guān),u

與v

負相關(guān)答案:B20.使關(guān)于的不等式有解的實數(shù)的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。21.已知x、y的取值如下表所示:

x0134y2.24.34.86.7若從散點圖分析,y與x線性相關(guān),且

y=0.95x+

a,則

a的值等于()A.2.6B.6.3C.2D.4.5答案:∵.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5,∴這組數(shù)據(jù)的樣本中心點是(2,4.5)∵y與x線性相關(guān),且y=0.95x+a,∴4.5=0.95×2+a,∴a=2.6,故選A.22.設(shè)等比數(shù)列{an}的首項為a1,公比為q,則“a1<0且0<q<1”是“對于任意n∈N*都有an+1>an”的

()

A.充分不必要條件

B.必要不充分條件

C.充分必要條件

D.既不充分又不必要條件答案:A23.如果橢圓x225+y216=1上一點P到焦點F1的距離為6,則點P到另一個焦點F2的距離為()A.5B.4C.8D.6答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故選B.24.已知x1,x2,…,xn都是正數(shù),且x1+x2+…+xn=1,求證:

++…+≥n2.答案:證明略解析:證明

++…+=(x1+x2+…+xn)(

++…+)≥=n2.25.某?,F(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會用分層抽樣的方法從這三個年級的學(xué)生中隨機抽取n名學(xué)生進行問卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()

A.10

B.9

C.8

D.7答案:A26.已知某一隨機變量ξ的分布列如下,且Eξ=6.3,則a的值為()

ξ

4

a

9

P

0.5

0.1

b

A.5

B.6

C.7

D.8答案:C27.想要檢驗是否喜歡參加體育活動是不是與性別有關(guān),應(yīng)該檢驗()

A.H0:男性喜歡參加體育活動

B.H0:女性不喜歡參加體育活動

C.H0:喜歡參加體育活動與性別有關(guān)

D.H0:喜歡參加體育活動與性別無關(guān)答案:D28.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應(yīng)有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數(shù)是前面兩個月兔子對數(shù)的和,設(shè)第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應(yīng)變第個月兔子的對數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個月兔子的數(shù),依此類推,可以得到一個數(shù)序列,數(shù)序列的第項就是年底應(yīng)有兔子對數(shù),我們可以先確定前兩個月的兔子對數(shù)均為,以此為基準,構(gòu)造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE

I<=12F=S+QQ=SS=FI=I+1WENDPRINT

FEND29.從一批產(chǎn)品中取出三件,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品不全是次品”,則下列結(jié)論正確的是()

A.A與C互斥

B.B與C互斥

C.任兩個均互斥

D.任兩個均不互斥答案:B30.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題,則x的取值范圍是______.答案:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題則它的否命題為真命題即{x|x<2或x>5}且{x|1≤x≤4}是真命題所以的取值范圍是[1,2),故為[1,2).31.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.32.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為______.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.33.下列給出的輸入語句、輸出語句和賦值語句

(1)輸出語句INPUT

a;b;c

(2)輸入語句INPUT

x=3

(3)賦值語句3=B

(4)賦值語句A=B=2

則其中正確的個數(shù)是()

A.0個

B.1個

C.2個

D.3個答案:A34.下列關(guān)于算法的說法中正確的個數(shù)是()

①求解某一類問題的算法是唯一的;

②算法必須在有限步操作之后停止;

③算法的每一步操作必須是明確的,不能有歧義或模糊;

④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說法中正確的個數(shù)是3.故選C.35.拋物線y=x2的焦點坐標是()

A.(,0)

B.(0,)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論