2023年山西建筑職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年山西建筑職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年山西建筑職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年山西建筑職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年山西建筑職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩43頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年山西建筑職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.下列四個(gè)函數(shù)中,與y=x表示同一函數(shù)的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項(xiàng)A中的函數(shù)的定義域與已知函數(shù)不同,故排除選項(xiàng)A.選項(xiàng)B中的函數(shù)與已知函數(shù)具有相同的定義域、值域和對(duì)應(yīng)關(guān)系,故是同一個(gè)函數(shù),故選項(xiàng)B滿足條件.選項(xiàng)C中的函數(shù)與已知函數(shù)的值域不同,故不是同一個(gè)函數(shù),故排除選項(xiàng)C.選項(xiàng)D中的函數(shù)與與已知函數(shù)的定義域不同,故不是同一個(gè)函數(shù),故排除選項(xiàng)D,故選B.2.(坐標(biāo)系與參數(shù)方程選做題)

直線x=-2+ty=1-t(t為參數(shù))被圓x=3+5cosθy=-1+5sinθ(θ為參數(shù),θ∈[0,2π))所截得的弦長(zhǎng)為_(kāi)_____.答案:直線和圓的參數(shù)方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長(zhǎng)l=225-92=82.故為:823.已知曲線C的參數(shù)方程為x=4t2y=t(t為參數(shù)),若點(diǎn)P(m,2)在曲線C上,則m=______.答案:因?yàn)榍€C的參數(shù)方程為x=4t2y=t(t為參數(shù)),消去參數(shù)t得:x=4y2;∵點(diǎn)P(m,2)在曲線C上,所以m=4×4=16.故為:16.4.直線4x-3y+5=0與直線8x-6y+5=0的距離為_(kāi)_____.答案:直線4x-3y+5=0即8x-6y+10=0,由兩平行線間的距離公式得:直線4x-3y+5=0(8x-6y+10=0)與直線8x-6y+5=0的距離是

|10-5|62+82=12,故為:12.5.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長(zhǎng)線于點(diǎn)G.

(1)求證:圓心O在直線AD上.

(2)求證:點(diǎn)C是線段GD的中點(diǎn).答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點(diǎn)F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點(diǎn)C是線段GD的中點(diǎn).(10分)6.甲,乙兩個(gè)工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表所列,則有結(jié)論:()

工人

廢品數(shù)

0

1

2

3

0

1

2

3

概率

0.4

0.3

0.2

0.1

0.3

0.5

0.2

0

A.甲的產(chǎn)品質(zhì)量比乙的產(chǎn)品質(zhì)量好一些

B.乙的產(chǎn)品質(zhì)量比甲的產(chǎn)品質(zhì)量好一些

C.兩人的產(chǎn)品質(zhì)量一樣好

D.無(wú)法判斷誰(shuí)的質(zhì)量好一些答案:B7.已知G是△ABC的重心,O是平面ABC外的一點(diǎn),若λOG=OA+OB+OC,則λ=______.答案:如圖,正方體中,OA+OB+OC=OD=3OG,∴λ=3.故為3.8.如圖,半徑為R的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時(shí),球的表面積與該圓柱的側(cè)面積之差是______.

答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當(dāng)且僅當(dāng)α=π4時(shí),sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR29.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()

A.

B.

C.

D.答案:B10.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時(shí),|ma+nb|的最大值為_(kāi)_____.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時(shí),|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.11.已知直線l過(guò)點(diǎn)P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則三角形OAB面積的最小值為_(kāi)_____.答案:設(shè)A(a,0)、B(0,b),a>0,b>0,AB方程為xa+

yb=1,點(diǎn)P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(當(dāng)且僅當(dāng)a=4,b=2時(shí),等號(hào)成立),故三角形OAB面積S=12

ab≥4,故為4.12.如果隨機(jī)變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()

A.0.1

B.0.2

C.0.3

D.0.4答案:A13.在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為有理數(shù)的點(diǎn)稱為有理點(diǎn).試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過(guò)點(diǎn)M(2,1),則此直線不能經(jīng)過(guò)兩個(gè)有理點(diǎn).答案:證明:假設(shè)此直線上有兩個(gè)有理點(diǎn)A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數(shù),則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數(shù)經(jīng)過(guò)四則運(yùn)算后還是有理數(shù),故k為有理數(shù).又由y1=kx1+b知,b也是有理數(shù).又∵點(diǎn)M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無(wú)理數(shù),右端為有理數(shù),顯然矛盾,故此直線不能經(jīng)過(guò)兩個(gè)有理點(diǎn).14.如果橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離為()A.5B.4C.8D.6答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故選B.15.集合A={一條邊長(zhǎng)為2,一個(gè)角為30°的等腰三角形},其中的元素個(gè)數(shù)為()A.2B.3C.4D.無(wú)數(shù)個(gè)答案:由題意,兩腰為2,底角為30°;兩腰為2,頂角為30°;底邊為2,底角為30°;底邊為2,頂角為30°.∴共4個(gè)元素,故選C.16.已知圖形F上的點(diǎn)A按向量平移前后的坐標(biāo)分別是和,若B()是圖形F上的又一點(diǎn),則在F按向量平移后得到的圖形F,上B,的坐標(biāo)是(

)A.B.C.D.答案:選D解析:設(shè)向量,則平移公式為依題意有∴平移公式為將B點(diǎn)坐標(biāo)代入可得B,點(diǎn)的坐標(biāo)為.所以選D.17.已知圓O的兩弦AB和CD延長(zhǎng)相交于E,過(guò)E點(diǎn)引EF∥CB交AD的延長(zhǎng)線于F,過(guò)F點(diǎn)作圓O的切線FG,求證:EF=FG.答案:證明:∵FG為⊙O的切線,而FDA為⊙O的割線,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE為公共角∴△EFD∽△AFE,F(xiàn)DEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.18.已知直線過(guò)點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(

A.l是方程|x|=2的曲線

B.|x|=2是l的方程

C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解

D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C19.以下關(guān)于排序的說(shuō)法中,正確的是(

)A.排序就是將數(shù)按從小到大的順序排序B.排序只有兩種方法,即直接插入排序和冒泡排序C.用冒泡排序把一列數(shù)從小到大排序時(shí),最小的數(shù)逐趟向上漂浮D.用冒泡排序把一列數(shù)從小到大排序時(shí),最大的數(shù)逐趟向上漂浮答案:C解析:由冒泡排序的特點(diǎn)知C正確.20.選修4-4:坐標(biāo)系與參數(shù)方程

已知極點(diǎn)O與原點(diǎn)重合,極軸與x軸的正半軸重合.點(diǎn)A,B的極坐標(biāo)分別為(2,π),(22,π4),曲線C的參數(shù)方程為答案:(Ⅰ)S△AOB=12×2×221.如圖,四面體ABCD中,點(diǎn)E是CD的中點(diǎn),記=(

A.

B.

C.

D.

答案:B22.過(guò)直線x+y-22=0上點(diǎn)P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點(diǎn)P的坐標(biāo)是______.答案:根據(jù)題意畫(huà)出相應(yīng)的圖形,如圖所示:直線PA和PB為過(guò)點(diǎn)P的兩條切線,且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)23.某個(gè)命題與自然數(shù)n有關(guān),若n=k(k∈N*)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí)該命題也成立.現(xiàn)已知當(dāng)n=5時(shí),該命題不成立,那么可推得()

A.當(dāng)n=6時(shí),該命題不成立

B.當(dāng)n=6時(shí),該命題成立

C.當(dāng)n=4時(shí),該命題不成立

D.當(dāng)n=4時(shí),該命題成立答案:C24.若一元二次方程ax2+2x+1=0有一個(gè)正根和一個(gè)負(fù)根,則有

A.a(chǎn)<0

B.a(chǎn)>0

C.a(chǎn)<-1

D.a(chǎn)>1答案:A25.某校有學(xué)生1

200人,為了調(diào)查某種情況打算抽取一個(gè)樣本容量為50的樣本,問(wèn)此樣本若采用簡(jiǎn)單隨便機(jī)抽樣將如何獲得?答案:本題可以采用抽簽法來(lái)抽取樣本,首先把該校學(xué)生都編上號(hào)0001,0002,0003…用抽簽法做1200個(gè)形狀、大小相同的號(hào)簽,然后將這些號(hào)簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號(hào)簽,連續(xù)抽取50次,就得到一個(gè)容量為50的樣本.26.(1+2x)7的展開(kāi)式中第4項(xiàng)的系數(shù)是______

(用數(shù)字作答)答案:(1+2x)7的展開(kāi)式的通項(xiàng)為T(mén)r+1=Cr7?(2x)r∴(1+2x)7的展開(kāi)式中第4項(xiàng)的系數(shù)是C37?23=280,故為:280.27.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點(diǎn)D的坐標(biāo).答案:設(shè)D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).28.已知α1,α2,…αn∈(0,π),n是大于1的正整數(shù),求證:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:證明:下面用數(shù)學(xué)歸納法證明(1)n=2時(shí),|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|?|sinα2|<sinα1+sinα2,所以n=2時(shí)成立.(2)假設(shè)n=k(k≥2)時(shí)成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk當(dāng)n=k+1時(shí),|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|?|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1時(shí)也成立.由(1)(2)得,原式成立.29.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2)、B(2,3)、C(-2,-1).

(1)求以線段AB、AC為鄰邊的平行四邊形兩條對(duì)角線的長(zhǎng);

(2)設(shè)實(shí)數(shù)t滿足(AB-tOC)?OC=0,求t的值.答案:(1)(方法一)由題設(shè)知AB=(3,5),AC=(-1,1),則AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的兩條對(duì)角線的長(zhǎng)分別為42、210.(方法二)設(shè)該平行四邊形的第四個(gè)頂點(diǎn)為D,兩條對(duì)角線的交點(diǎn)為E,則:E為B、C的中點(diǎn),E(0,1)又E(0,1)為A、D的中點(diǎn),所以D(1,4)故所求的兩條對(duì)角線的長(zhǎng)分別為BC=42、AD=210;(2)由題設(shè)知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)?OC=0,得:(3+2t,5+t)?(-2,-1)=0,從而5t=-11,所以t=-115.或者:AB?OC=tOC2,AB=(3,5),t=AB?OC|OC|2=-11530.同時(shí)擲兩顆骰子,得到的點(diǎn)數(shù)和為4的概率是______.答案:同時(shí)擲兩顆骰子得到的點(diǎn)數(shù)共有36種情況,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和為4的情況數(shù)有3種,即(1,3)(2,2)(3,1)所以所求概率為336=112,故為:11231.已知=2+i,則復(fù)數(shù)z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B32.已知函數(shù)f(x)=|log2x-1|+|log2x-2|,解不等式f(x)>4.答案:f(x)=|log2x-1|+|log2x-2|,取絕對(duì)值得:f(x)=3-2log2x,0<x<21,2≤x≤42log2x-3,x>4所以f(x)>4等價(jià)于:0<x≤23-2log2x>4或x≥42log2x-3>4,解得:0<x<22或x>82.33.如圖,一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長(zhǎng)為2,那么

這個(gè)幾何體的體積為()A.13B.23C.43D.2答案:根據(jù)三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個(gè)腰長(zhǎng)是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側(cè)棱長(zhǎng)是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.34.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為_(kāi)_____.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.35.若=(2,0),那么=(

A.(1,2)

B.3

C.2

D.1答案:C36.已知邊長(zhǎng)為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因?yàn)檎叫蔚倪呴L(zhǎng)等于1所以|AB+BC+CD|=|AD|

=1故為:137.用A、B、C三類(lèi)不同的元件連接成兩個(gè)系統(tǒng)N1、N2當(dāng)元件A、B、C都正常工作時(shí),系統(tǒng)N1正常工作,當(dāng)元件A正常工作且元件B、C至少有一個(gè)正常工作時(shí),系統(tǒng)N2正常工作。已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90,分別求系統(tǒng)N1、N2正常工作的概率.

答案:0.792解析:解:分別記三個(gè)元件A、B、C能正常工作為事件A、B、C,由題意,這三個(gè)事件相互獨(dú)立,系統(tǒng)N1正常工作的概率為P(A·B·C)=P(A)·P(B)·P(C)=0.8′0.9′0.9=0.648系統(tǒng)N2中,記事件D為B、C至少有一個(gè)正常工作,則P(D)=1–P()="1–"P()·P()=1–(1–0.9)′(1–0.9)=0.99系統(tǒng)N2正常工作的概率為P(A·D)=P(A)·P(D)=0.8′0.99=0.792。38.如果雙曲線的焦距為6,兩條準(zhǔn)線間的距離為4,那么該雙曲線的離心率為()

A.

B.

C.

D.2答案:C39.有以下四個(gè)結(jié)論:

①lg(lg10)=0;

②lg(lne)=0;

③若e=lnx,則x=e2;

④ln(lg1)=0.

其中正確的是()

A.①②

B.①②③

C.①②④

D.②③④答案:A40.已知空間向量a=(1,2,3),點(diǎn)A(0,1,0),若AB=-2a,則點(diǎn)B的坐標(biāo)是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設(shè)B=(x,y,z),因?yàn)锳B=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.41.(不等式選講選做題)已知a,b,c∈R+,且a+b+c=1,則3a+1+3b+1+3c+1的最大值為_(kāi)_____.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1),即a=b=c=13時(shí),(3a+1+3b+1+3c+1)2的最大值為18因此3a+1+3b+1+3c+1的最大值為32.故為:3242.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,則

k=______.答案:因?yàn)橐阎獂2+4y2+kz2=36根據(jù)柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故為:9.43.P為橢圓x225+y216=1上一點(diǎn),F(xiàn)1,F(xiàn)2分別為其左,右焦點(diǎn),則△PF1F2周長(zhǎng)為_(kāi)_____.答案:由題意知△PF1F2周長(zhǎng)=2a+2c=10+6=16.44.如果一個(gè)水平放置的圖形的斜二測(cè)直觀圖是一個(gè)底面為45°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是()

A.2+

B.

C.

D.1+答案:A45.直線l1過(guò)點(diǎn)P(0,-1),且傾斜角為α=30°.

(I)求直線l1的參數(shù)方程;

(II)若直線l1和直線l2:x+y-2=0交于點(diǎn)Q,求|PQ|.答案:(Ⅰ)直線l1的參數(shù)方程為x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t為參數(shù))

(Ⅱ)將上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根據(jù)t的幾何意義得出|PQ|=|t|=3(3-1)46.若函數(shù)y=f(x)的定義域是[12,2],則函數(shù)y=f(log2x)的定義域?yàn)開(kāi)_____.答案:由題意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故為:[2,4].47.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點(diǎn)為P(2,3),求過(guò)兩點(diǎn)Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程.答案:∵P(2,3)在已知直線上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直線方程為y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.48.從集合M={1,2,3,…,10}選出5個(gè)數(shù)組成的子集,使得這5個(gè)數(shù)的任兩個(gè)數(shù)之和都不等于11,則這樣的子集有______個(gè).答案:集合{1,2,…,10}中和是11的有:1+10,2+9,3+8,4+7,5+6,選出5個(gè)不同的數(shù)組成子集,就是從這5組中分別取一個(gè)數(shù),而每組的取法有2種,所以這樣的子集有:2×2×2×2×2=32故這樣的子集有32個(gè)故為:3249.點(diǎn)A(-,1)關(guān)于y軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(

A.(-,-1)

B.(,-1)

C.(-,1)

D.(,1)答案:D50.某簡(jiǎn)單幾何體的三視圖如圖所示,其正視圖.側(cè)視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個(gè)幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個(gè)三棱錐,設(shè)出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2

①xz=4

②yz=8

③由①②得z=2y

④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.第2卷一.綜合題(共50題)1.若方程mx2+(m+1)x+m=0有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)m的取值范圍是()

A.m>0

B.-<m<1

C.-<m<0或0<m<1

D.不確定答案:C2.一個(gè)箱中原來(lái)裝有大小相同的

5

個(gè)球,其中

3

個(gè)紅球,2

個(gè)白球.規(guī)定:進(jìn)行一次操

作是指“從箱中隨機(jī)取出一個(gè)球,如果取出的是紅球,則把它放回箱中;如果取出的是白

球,則該球不放回,并另補(bǔ)一個(gè)紅球放到箱中.”

(1)求進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為

4

的概率;

(2)求進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)的分布列和數(shù)學(xué)期望.答案:(1)設(shè)A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計(jì)算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計(jì)算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為

4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設(shè)進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)X的分布列為:進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)X的數(shù)學(xué)期望EX=3×925+4×1425+5×225=9325.3.求圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))的圓心坐標(biāo),和圓C關(guān)于直線x-y=0對(duì)稱的圓C′的普通方程.答案:圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))

(x-3)2+(y+2)2=16,表示圓心坐標(biāo)(3,-2),半徑等于4的圓.C(3,-2)關(guān)于直線x-y=0對(duì)稱的點(diǎn)C′(-2,3),半徑還是4,故圓C′的普通方程(x+2)2+(y-3)2=16.4.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關(guān)系為

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.5.若點(diǎn)A(1,2,3),B(-3,2,7),且AC+BC=0,則點(diǎn)C的坐標(biāo)為_(kāi)_____.答案:設(shè)C(x,y,z),則AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故為(-1,2,5)6.已知兩個(gè)力F1,F(xiàn)2的夾角為90°,它們的合力大小為20N,合力與F1的夾角為30°,那么F1的大小為()A.103NB.10

NC.20

ND.102N答案:設(shè)向F1,F(xiàn)2的對(duì)應(yīng)向量分別為OA、OB以O(shè)A、OB為鄰邊作平行四邊形OACB如圖,則OC=OA+OB,對(duì)應(yīng)力F1,F(xiàn)2的合力∵F1,F(xiàn)2的夾角為90°,∴四邊形OACB是矩形在Rt△OAC中,∠COA=30°,|OC|=20∴|OA|=|OC|cos30°=103故選:A7.

如圖,已知平行六面體OABC-O1A1B1C1,點(diǎn)G是上底面O1A1B1C1的中心,且,則用

表示向量為(

A.

B.

C.

D.

答案:A8.已知圓O:x2+y2=5和點(diǎn)A(1,2),則過(guò)A且與圓O相切的直線與兩坐標(biāo)軸圍成的三角形的面積=______.答案:由題意知,點(diǎn)A在圓上,切線斜率為-1KOA=-121=-12,用點(diǎn)斜式可直接求出切線方程為:y-2=-12(x-1),即x+2y-5=0,從而求出在兩坐標(biāo)軸上的截距分別是5和52,所以,所求面積為12×52×5=254.9.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點(diǎn),建立適當(dāng)?shù)淖鴺?biāo)系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個(gè)法向量.解析:以D為原點(diǎn),DA、DC、DD1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系.(如圖所示).設(shè)棱長(zhǎng)為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設(shè)平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個(gè)法向量.10.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}11.下列說(shuō)法不正確的是()A.圓柱側(cè)面展開(kāi)圖是一個(gè)矩形B.圓錐的過(guò)軸的截面是等腰三角形C.直角三角形繞它的一條邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐D.圓臺(tái)平行于底面的截面是圓面答案:圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,A正確,因?yàn)槟妇€長(zhǎng)相等,得到圓錐的軸截面是一個(gè)等腰三角形,B正確,圓臺(tái)平行于底面的截面是圓面,D正確,故選C.12.如圖,一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長(zhǎng)為2,那么

這個(gè)幾何體的體積為()A.13B.23C.43D.2答案:根據(jù)三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個(gè)腰長(zhǎng)是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側(cè)棱長(zhǎng)是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.13.如圖P為空間中任意一點(diǎn),動(dòng)點(diǎn)Q在△ABC所在平面內(nèi)運(yùn)動(dòng),且,則實(shí)數(shù)m=()

A.0

B.2

C.-2

D.1

答案:C14.已知點(diǎn)P是以F1、F2為左、右焦點(diǎn)的雙曲線(a>0,b>0)左支上一點(diǎn),且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()

A.

B.

C.

D.答案:D15.設(shè)O是正方形ABCD的中心,向量,,,是(

A.平行向量

B.有相同終點(diǎn)的向量

C.相等向量

D.模相等的向量答案:D16.設(shè)F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn),P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,則點(diǎn)P的縱坐標(biāo)為_(kāi)_____.答案:由題意,P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,故可分為兩類(lèi):①當(dāng)∠P為直角時(shí),設(shè)P的縱坐標(biāo)為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn)∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當(dāng)∠PF2F1為直角時(shí),P的橫坐標(biāo)為3設(shè)P的縱坐標(biāo)為y(y>0),則(3)24+y2=1,∴y=12故為:33

或1217.已知函數(shù)f(x)=x21+x2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=______.答案:∵f(x)=x21+x2,∴f(1x)=11+x2∴f(x)+f(1x)=1∴f(2)+f(12)=1,f(3)+f(13)=1,f(4)+f(14)=1,f(1)=12∴f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=72故為:7218.從1,2,3,4,5,6,7這七個(gè)數(shù)字中任取兩個(gè)奇數(shù)和兩個(gè)偶數(shù),組成沒(méi)有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)的個(gè)數(shù)為()

A.432

B.288

C.216

D.108答案:C19.圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是

______.答案:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:半徑+圓心到直線的距離.而根據(jù)圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:320.如圖,點(diǎn)O是正六邊形ABCDEF的中心,則以圖中點(diǎn)A、B、C、D、E、F、O中的任意一點(diǎn)為始點(diǎn),與始點(diǎn)不同的另一點(diǎn)為終點(diǎn)的所有向量中,除向量外,與向量共線的向量共有()

A.2個(gè)

B.3個(gè)

C.6個(gè)

D.9個(gè)

答案:D21.現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為a24.類(lèi)比到空間,有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為_(kāi)_____.答案:∵同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為a24,類(lèi)比到空間有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為a38,故為a38.22.一個(gè)盒子裝有10個(gè)紅、白兩色同一型號(hào)的乒乓球,已知紅色乒乓球有3個(gè),若從盒子里隨機(jī)取出3個(gè)乒乓球,則其中含有紅色乒乓球個(gè)數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個(gè)數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×

2140+2×740+3×1120=910.故為:910.23.橢圓x216+y27=1上的點(diǎn)M到左準(zhǔn)線的距離為53,則點(diǎn)M到左焦點(diǎn)的距離為()A.8B.5C.274D.54答案:根據(jù)橢圓的第二定義可知M到左焦點(diǎn)F1的距離與其到左準(zhǔn)線的距離之比為離心率,依題意可知a=4,b=7∴c=3∴e=ca=34,∴根據(jù)橢圓的第二定義有:MF

1d=34∴M到左焦點(diǎn)的距離為MF1=53×34=54故選D.24.已知平面上直線l的方向向量=(-,),點(diǎn)O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D25.已知矩陣M=2a21,其中a∈R,若點(diǎn)P(1,-2)在矩陣M的變換下得到點(diǎn)P'(-4,0)

(1)求實(shí)數(shù)a的值;

(2)求矩陣M的特征值及其對(duì)應(yīng)的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項(xiàng)式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當(dāng)λ=-1時(shí),(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個(gè)特征向量為1-1;當(dāng)λ=4時(shí),(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個(gè)特征向量為32.26.(1+x)6的各二項(xiàng)式系數(shù)的最大值是______.答案:根據(jù)二項(xiàng)展開(kāi)式的性質(zhì)可得,(1+x)6的各二項(xiàng)式系數(shù)的最大值C36=20故為:2027.設(shè)集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B28.已知命題p:“△ABC是等腰三角形”,命題q:“△ABC是直角三角形”,則命題“△ABC是等腰直角三角形”的形式是()A.p或qB.p且qC.非pD.以上都不對(duì)答案:因?yàn)椤啊鰽BC是等腰直角三角形”即為“△ABC是等腰且直角三角形”,所以命題“△ABC是等腰直角三角形”的形式是p且q,故選B.29.(1)把二進(jìn)制數(shù)化為十進(jìn)制數(shù);(2)把化為二進(jìn)制數(shù).答案:(1)45,(2)解析:(1)先把二進(jìn)制數(shù)寫(xiě)成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進(jìn)制的運(yùn)算規(guī)則計(jì)算出結(jié)果;(2)根據(jù)二進(jìn)制數(shù)“滿二進(jìn)一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過(guò)該例,我們對(duì)比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..30.如圖是《集合》的知識(shí)結(jié)構(gòu)圖,如果要加入“子集”,那么應(yīng)該放在()

A.“集合”的下位

B.“含義與表示”的下位

C.“基本關(guān)系”的下位

D.“基本運(yùn)算”的下位

答案:C31.用反證法證明命題“三角形的內(nèi)角中至多有一個(gè)是鈍角”時(shí),第一步是:“假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,而命題“三角形的內(nèi)角中至多有一個(gè)是鈍角”的否定為:“三角形的內(nèi)角中至少有兩個(gè)鈍角”,故為“三角形的內(nèi)角中至少有兩個(gè)鈍角”.32.以橢圓上一點(diǎn)和橢圓兩焦點(diǎn)為頂點(diǎn)的三角形的面積最大值為1時(shí),橢圓長(zhǎng)軸的最小值為()

A.

B.

C.2

D.2

答案:D33.知x、y、z均為實(shí)數(shù),

(1)若x+y+z=1,求證:++≤3;

(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明

因?yàn)椋?+)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.

7分(2)解

因?yàn)?12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.

14分34.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____35.已知一次函數(shù)y=(2k-4)x-1在R上是減函數(shù),則k的取值范圍是()A.k>2B.k≥2C.k<2D.k≤2答案:因?yàn)楹瘮?shù)y=(2k-4)x-1為R上是減函數(shù)?該一次函數(shù)的一次項(xiàng)的系數(shù)為負(fù)?2k-4<0?k<2.故為:C36.某種細(xì)菌在培養(yǎng)過(guò)程中,每15分鐘分裂一次(由一個(gè)分裂成兩個(gè)),這種細(xì)菌由1個(gè)繁殖成4096個(gè)需經(jīng)過(guò)()A.12小時(shí)B.4小時(shí)C.3小時(shí)D.2小時(shí)答案:設(shè)共分裂了x次,則有2x=4

096,∴2x=212,又∵每次為15分鐘,∴共15×12=180(分鐘),即3個(gè)小時(shí).故為C37.“a2+b2≠0”的含義為()A.a(chǎn)和b都不為0B.a(chǎn)和b至少有一個(gè)為0C.a(chǎn)和b至少有一個(gè)不為0D.a(chǎn)不為0且b為0,或b不為0且a為0答案:a2+b2≠0的等價(jià)條件是a≠0或b≠0,即兩者中至少有一個(gè)不為0,對(duì)照四個(gè)選項(xiàng),只有C與此意思同,C正確;A中a和b都不為0,是a2+b2≠0充分不必要條件;B中a和b至少有一個(gè)為0包括了兩個(gè)數(shù)都是0,故不對(duì);D中只是兩個(gè)數(shù)僅有一個(gè)為0,概括不全面,故不對(duì);故選C38.以A(1,5)、B(5,1)、C(-9,-9)為頂點(diǎn)的三角形是()

A.等邊三角形

B.等腰三角形

C.不等邊三角形

D.直角三角形答案:B39.如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B),其中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤(pán)玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)再隨機(jī)停下(指針固定不動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次轉(zhuǎn)動(dòng)無(wú)效,重新開(kāi)始)為一次游戲,記轉(zhuǎn)盤(pán)(A)指針?biāo)鶎?duì)的數(shù)為X轉(zhuǎn)盤(pán)(B)指針對(duì)的數(shù)為Y設(shè)X+Yξ,每次游戲得到的獎(jiǎng)勵(lì)分為ξ分.

(1)求X<2且Y>1時(shí)的概率

(2)某人玩12次游戲,求他平均可以得到多少獎(jiǎng)勵(lì)分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;

P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎(jiǎng)勵(lì)分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎(jiǎng)勵(lì)分為12×Eξ=50.40.六個(gè)不同大小的數(shù)按如圖形式隨機(jī)排列,設(shè)第一行這個(gè)數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個(gè)數(shù)______.答案:首先M3一定是6個(gè)數(shù)中最大的,設(shè)這六個(gè)數(shù)分別為a,b,c,d,e,f,不妨設(shè)a>b>c>d>e>f.因?yàn)槿绻鸻在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時(shí)無(wú)法滿足M1<M2<M3,故a一定在第三行.故

M2一定是b,c,d中一個(gè),否則,若M2是e,則第二行另一個(gè)數(shù)只能是f,那么第一行的數(shù)就比e大,無(wú)法滿足M1<M2<M3.當(dāng)M2是b時(shí),此時(shí),a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31

C21

A44=144(種),當(dāng)M2是c時(shí),此時(shí)a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32

C21

A33=72(種),當(dāng)M2是d時(shí),此時(shí),a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33

C21

A22=24(種),故滿足M1<M2<M3所有排列的個(gè)數(shù)為:24+72+144=240種,故為:240.41.當(dāng)a>0時(shí),不等式組的解集為(

)。答案:當(dāng)a>時(shí)為;當(dāng)a=時(shí)為{};當(dāng)0<a<時(shí)為[a,1-a]42.某廠一批產(chǎn)品的合格率是98%,檢驗(yàn)單位從中有放回地隨機(jī)抽取10件,則計(jì)算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機(jī)抽取,所以X服從二項(xiàng)分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.43.若方程Ax+By+C=0表示與兩條坐標(biāo)軸都相交的直線,則()

A.A≠0B≠0C≠0

B.A≠0B≠0

C.B≠0C≠0

D.A≠0C≠0答案:B44.某班試用電子投票系統(tǒng)選舉班干部候選人.全班k名同學(xué)都有選舉權(quán)和被選舉權(quán),他們的編號(hào)分別為1,2,…,k,規(guī)定:同意按“1”,不同意(含棄權(quán))按“0”,令aij=1,第i號(hào)同學(xué)同意第j號(hào)同學(xué)當(dāng)選.0,第i號(hào)同學(xué)不同意第j號(hào)同學(xué)當(dāng)選.其中i=1,2,…,k,且j=1,2,…,k,則同時(shí)同意第1,2號(hào)同學(xué)當(dāng)選的人數(shù)為()A.a(chǎn)11+a12+…+a1k+a21+a22+…+a2kB.a(chǎn)11+a21+…+ak1+a12+a22+…+ak2C.a(chǎn)11a12+a21a22+…+ak1ak2D.a(chǎn)11a21+a12a22+…+a1ka2k答案:第1,2,…,k名學(xué)生是否同意第1號(hào)同學(xué)當(dāng)選依次由a11,a21,a31,…,ak1來(lái)確定(aij=1表示同意,aij=0表示不同意或棄權(quán)),是否同意第2號(hào)同學(xué)當(dāng)選依次由a12,a22,…,ak2確定,而是否同時(shí)同意1,2號(hào)同學(xué)當(dāng)選依次由a11a12,a21a22,…,ak1ak2確定,故同時(shí)同意1,2號(hào)同學(xué)當(dāng)選的人數(shù)為a11a12+a21a22+…+ak1ak2,故選C.45.如圖,四面體ABCD中,點(diǎn)E是CD的中點(diǎn),記=(

A.

B.

C.

D.

答案:B46.如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°47.把平面上一切單位向量歸結(jié)到共同的起點(diǎn),那么這些向量的終點(diǎn)所構(gòu)成的圖形是

______.答案:把平面上一切單位向量歸結(jié)到共同的起點(diǎn),那么這些向量的終點(diǎn)到起點(diǎn)的距離都等于1,所以,由圓的定義得,這些向量的終點(diǎn)所構(gòu)成的圖形是半徑為1的圓.48.如圖,已知雙曲線以長(zhǎng)方形ABCD的頂點(diǎn)A,B為左、右焦點(diǎn),且過(guò)C,D兩頂點(diǎn).若AB=4,BC=3,則此雙曲線的標(biāo)準(zhǔn)方程為_(kāi)_____.答案:由題意可得點(diǎn)OA=OB=2,AC=5設(shè)雙曲線的標(biāo)準(zhǔn)方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標(biāo)準(zhǔn)方程是x2-y23=1.故為:x2-y23=149.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù),若通話費(fèi)為10.6元,則通話時(shí)間m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故為:(17,18].50.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()

A.

B.

C.

D.

答案:A第3卷一.綜合題(共50題)1.對(duì)任意實(shí)數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個(gè)非零常數(shù)m,使得對(duì)任意實(shí)數(shù)x,都有x*m=x,則m的值是[

]

A.4

B.-4

C.-5

D.6答案:A2.在同一坐標(biāo)系中,y=ax與y=a+x表示正確的是()A.

B.

C.

D.

答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號(hào)知若y=ax遞增,則y=x+a與y軸的交點(diǎn)在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點(diǎn)在y軸的負(fù)半軸上,由此排除D,知A是正確的;故選A.3.甲、乙兩位運(yùn)動(dòng)員在5場(chǎng)比賽的得分情況如莖葉圖所示,記甲、乙兩人的平均得分分別為.x甲,.x乙,則下列判斷正確的是()A..x甲>.x乙;甲比乙成績(jī)穩(wěn)定B..x甲>.x乙;乙比甲成績(jī)穩(wěn)定C..x甲<.x乙;甲比乙成績(jī)穩(wěn)定D..x甲<.x乙;乙比甲成績(jī)穩(wěn)定答案:5場(chǎng)比賽甲的得分為16、17、28、30、34,5場(chǎng)比賽乙的得分為15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成績(jī)穩(wěn)定故選D.4.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AC于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)P.問(wèn):PD與AC是否互相垂直?請(qǐng)說(shuō)明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.5.甲、乙兩人進(jìn)行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經(jīng)驗(yàn),每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(

A.0.216

B.0.36

C.0.432

D.0.648答案:D6.若雙曲線的漸近線方程為y=±3x,它的一個(gè)焦點(diǎn)是(10,0),則雙曲線的方程是______.答案:因?yàn)殡p曲線的漸近線方程為y=±3x,則設(shè)雙曲線的方程是x2-y29=λ,又它的一個(gè)焦點(diǎn)是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=17.如圖:一個(gè)力F作用于小車(chē)G,使小車(chē)G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車(chē)的位移方向的夾角為60°,則F在小車(chē)位移方向上的正射影的數(shù)量為_(kāi)_____,力F做的功為_(kāi)_____牛米.答案:如圖,∵|F|=50,且F與小車(chē)的位移方向的夾角為60°,∴F在小車(chē)位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車(chē)G,使小車(chē)G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.8.已知平面上的向量PA、PB滿足|PA|2+|PB|2=4,|AB|=2,設(shè)向量PC=2PA+PB,則|PC|的最小值是

______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故為2.9.在吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,下列說(shuō)法正確的是()

A.若k2的觀測(cè)值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病

B.從獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時(shí),我們說(shuō)某人吸煙,那么他有99%的可能患有肺病

C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤

D.以上三種說(shuō)法都不正確答案:D10.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,則實(shí)數(shù)x+y的值______.答案:因?yàn)榧螦={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故為:34.11.若一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),則有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),∴一次項(xiàng)系數(shù)m>0,故選C.12.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.

(Ⅰ)求證:AC是△BDE的外接圓的切線;

(Ⅱ)若AD=23,AE=6,求EC的長(zhǎng).答案:證明:(Ⅰ)取BD的中點(diǎn)O,連接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線.

…(5分)(Ⅱ)設(shè)⊙O的半徑為r,則在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.

…(10分)13.某簡(jiǎn)單幾何體的三視圖如圖所示,其正視圖.側(cè)視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個(gè)幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個(gè)三棱錐,設(shè)出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2

①xz=4

②yz=8

③由①②得z=2y

④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.14.某次考試,滿分100分,按規(guī)定x≥80者為良好,60≤x<80者為及格,小于60者不及格,畫(huà)出當(dāng)輸入一個(gè)同學(xué)的成績(jī)x時(shí),輸出這個(gè)同學(xué)屬于良好、及格還是不及格的程序框圖.答案:第一步:輸入一個(gè)成績(jī)X(0≤X≤100)第二步:判斷X是否大于等于80,若是,則輸出良好;否則,判斷X是否大于等于60,若是,則輸出及格;否則,輸出不及格;第三步:算法結(jié)束15.國(guó)旗上的正五角星的每一個(gè)頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.16.已知|log12x+4i|≥5,則實(shí)數(shù)x

的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實(shí)數(shù)x

的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.17.已知圓M的方程為:(x+3)2+y2=100及定點(diǎn)N(3,0),動(dòng)點(diǎn)P在圓M上運(yùn)動(dòng),線段PN的垂直平分線交圓M的半徑MP于Q點(diǎn),設(shè)點(diǎn)Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點(diǎn)Q的軌跡是M,N為焦點(diǎn),以10為長(zhǎng)軸長(zhǎng)的橢圓,所以2a=10,2c=6,所以b=4,所以,點(diǎn)Q的軌跡方程為:x225+y216=1故為:x225+y216=118.柱坐標(biāo)(2,,5)對(duì)應(yīng)的點(diǎn)的直角坐標(biāo)是

。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對(duì)應(yīng)直角坐標(biāo)是()19.一個(gè)水平放置的平面圖形,其斜二測(cè)直觀圖是一個(gè)等腰三角形,腰AB=AC=1,如圖,則平面圖形的實(shí)際面積為()

A.1

B.2

C.

D.

答案:A20.在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于()

A.3.2cm

B.3.4cm

C.3.6cm

D.4.0cm答案:C21.在市場(chǎng)上供應(yīng)的燈泡中,甲廠產(chǎn)品占70%,乙廠占30%,甲廠產(chǎn)品的合格率是95%,乙廠的合格率是80%,則從市場(chǎng)上買(mǎi)到一個(gè)甲廠生產(chǎn)的合格燈泡的概率是______.答案:由題意知本題是一個(gè)相互獨(dú)立事件同時(shí)發(fā)生的概率,∵甲廠產(chǎn)品占70%,甲廠產(chǎn)品的合格率是95%,∴從市場(chǎng)上買(mǎi)到一個(gè)甲廠生產(chǎn)的合格燈泡的概率是0.7×0.95=0.665故為:0.66522.已知空間三點(diǎn)的坐標(biāo)為A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三點(diǎn)共線,則p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三點(diǎn)共線,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故為:3;223.(本小題滿分10分)選修4-1:幾何證明選講

如圖,的角平分線的延長(zhǎng)線交它的外接圓于點(diǎn).

(Ⅰ)證明:;

(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見(jiàn)解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關(guān)的定理及性質(zhì)的應(yīng)用、三角形相似及性質(zhì)的應(yīng)用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因?yàn)椤螦EB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因?yàn)椤鰽BE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.【點(diǎn)評(píng)】在圓的有關(guān)問(wèn)題中經(jīng)常要用到弦切角定理、圓周角定理、相交弦定理等結(jié)論,解題時(shí)要注意根據(jù)已知條件進(jìn)行靈活的選擇,同時(shí)三角形相似是證明一些與比例有關(guān)問(wèn)題的的最好的方法.24.為了調(diào)查某產(chǎn)品的銷(xiāo)售情況,銷(xiāo)售部門(mén)從下屬的92家銷(xiāo)售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機(jī)剔除的個(gè)體數(shù)分別為()

A.3,2

B.2,3

C.2,30

D.30,2答案:A25.關(guān)于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()

A.x>

B.x<

C.x>2

D.x<2答案:B26.如圖程序運(yùn)行后輸出的結(jié)果為_(kāi)_____.答案:由題意,列出如下表格s

0

5

9

12

n

5

4

3

2當(dāng)n=12時(shí),不滿足“s<10”,則輸出n的值2故為:227.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)與橢圓=1的一個(gè)焦點(diǎn)重合,則拋物線方程是()

A.x2=±8y

B.y2=±8x

C.x2=±4y

D.y2=±4x答案:A28.使關(guān)于的不等式有解的實(shí)數(shù)的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。29.給出的下列幾個(gè)命題:

①向量共面,則它們所在的直線共面;

②零向量的方向是任意的;

③若則存在唯一的實(shí)數(shù)λ,使

其中真命題的個(gè)數(shù)為()

A.0

B.1

C.2

D.3答案:B30.已知的單調(diào)區(qū)間;

(2)若答案:(1)(2)證明略解析:(1)對(duì)已知函數(shù)進(jìn)行降次分項(xiàng)變形

,得,(2)首先證明任意事實(shí)上,而

.31.給定點(diǎn)A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個(gè)命題:

①當(dāng)點(diǎn)A在圓C上時(shí),直線l與圓C相切;

②當(dāng)點(diǎn)A在圓C內(nèi)時(shí),直線l與圓C相離;

③當(dāng)點(diǎn)A在圓C外時(shí),直線l與圓C相交.

其中正確的命題個(gè)數(shù)是()

A.0

B.1

C.2

D.3答案:D32.已知點(diǎn)G是△ABC的重心,過(guò)G作直線與AB,AC兩邊分別交于M,N兩點(diǎn),且,則的值()

A.3

B.

C.2

D.答案:B33.利用計(jì)算機(jī)在區(qū)間(0,1)上產(chǎn)生兩個(gè)隨機(jī)數(shù)a和b,則方程有實(shí)根的概率為()

A.

B.

C.

D.1答案:A34.橢圓x2+my2=1的焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則m的值為()

A.

B.

C.2

D.4答案:A35.函數(shù)y=(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論