版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年廣東江門中醫(yī)藥職業(yè)學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.某程序圖如圖所示,該程序運行后輸出的結果是______.答案:由圖知運算規(guī)則是對S=2S,故第一次進入循環(huán)體后S=21,第二次進入循環(huán)體后S=22=4,第三次進入循環(huán)體后S=24=16,第四次進入循環(huán)體后S=216>2012,退出循環(huán).故該程序運行后輸出的結果是:k=4+1=5.故為:52.在空間直角坐標系0xyz中有兩點A(2,5,1)和B(2,4,-1),則|AB|=______.答案:∵點A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故為5.3.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點,M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結CN并延長交AB于G,因為AB∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點,所以AC=12a+b,又E、F分別是AD,BC的中點,M、N在EF上,且EM=MN=NF,所以M為AC的中點,所以AM=12AC,所以AM=14a+12b.故為:14a+12b.4.雙曲線x2a2-y2b2=1,(a>0,b>0)的一條漸近線方程是y=3x,坐標原點到直線AB的距離為32,其中A(a,0),B(0,-b).
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在y軸正半軸上的端點,過點B作直線交雙曲線于點M,N,求B1M⊥B1N時,直線MN的方程.答案:(1)∵A(a,0),B(0,-b),∴設直線AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴雙曲線方程為:x23-y29=1.(2)∵雙曲線方程為:x23-y29=1,∴A1(-3,0),A2(3,0),設P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),設M(x1,y1),N(x2,y2)∴設直線l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3
y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3
y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)
B1N=(x2,y2-3)∵B1M?B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴l(xiāng)MN:y=±5x-3.5.函數y=x2x4+9(x≠0)的最大值為______,此時x的值為______.答案:y=x2x4+9=1x2+9x2≤129=16,當且僅當x2=9x2,即x=±3時取等號.故為:16,
±36.在平面直角坐標系內第二象限的點組成的集合為______.答案:∵平面直角坐標系內第二象限的點,橫坐標小于0,縱坐標大于0,∴在平面直角坐標系內第二象限的點組成的集合為{(x,y)|x<0且y>0},故為:{(x,y)|x<0且y>0}.7.4名學生參加3項不同的競賽,則不同參賽方法有()A.34B.A43C.3!D.43答案:由題意知本題是一個分步計數問題,首先第一名學生從三種不同的競賽中選有三種不同的結果,第二名學生從三種不同的競賽中選有3種結果,同理第三個和第四個同學從三種競賽中選都有3種結果,∴根據分步計數原理得到共有3×3×3×3=34故選A.8.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,則A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故選D.9.將直線y=x繞原點逆時針旋轉60°,所得直線的方程為()
A.y=-x
B.
C.y=-3x
D.答案:A10.對任意實數x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數,等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數m,使得對任意實數x,都有x*m=x,則m的值是(
)。答案:411.已知單位正方體ABCD-A1B1C1D1,E分別是棱C1D1的中點,試求:
(1)AE與平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.答案:以D為坐標原點建立空間直角坐標系,如圖所示:(1)設正方體棱長為2.則E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量為n=(0,1,0).設AE與平面BCC1B1所成的角為θ.sinθ=|cos<AE,n>|=|AE?n||AE|
|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).設平面DBC1的法向量為n1=(x,y,z),則n1?DB=x+y=0n1?DC1=y+z=0,令y=-1,則x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量為n2=(0,0,1).設二面角C1-DB-A的大小為α,從圖中可知:α為鈍角.∵cos<n1,n2>=n1?n2|n1|
|n2|=13=33,∴cosα=-33.12.如圖,有兩條相交成π3角的直線EF,MN,交點是O.一開始,甲在OE上距O點2km的A處;乙在OM距O點1km的B處.現在他們同時以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.設與OE同向的單位向量為e1,與OM同向的單位向量為e2.
(1)求e1,e2;
(2)若過2小時后,甲到達C點,乙到達D點,請用e1,e2表示CD;
(3)若過t小時后,甲到達G點,乙到達H點,請用e1,e2表示GH;
(4)什么時間兩人間距最短?答案:(1)由題意可得e1=12OA,e2=OB,(2)若過2小時后,甲到達C點,乙到達D點,則OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:經過t小時后,甲到達G點,乙到達H點,則OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故兩人間距離y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函數的知識可知,當t=--62×12=14時,上式取到最小值32,故14時兩人間距離最短.13.若雙曲線的焦點到其漸近線的距離等于實軸長,則該雙曲線的離心率為()
A.5
B.
C.2
D.答案:B14.刻畫數據的離散程度的度量,下列說法正確的是()
(1)應充分利用所得的數據,以便提供更確切的信息;
(2)可以用多個數值來刻畫數據的離散程度;
(3)對于不同的數據集,其離散程度大時,該數值應越?。?/p>
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正確答案:C15.已知m2+n2=1,a2+b2=2,則am+bn的最大值是()
A.1
B.
C.
D.以上都不對答案:C16.如果e1,e2是平面a內所有向量的一組基底,那么()A.若實數λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.空間任一向量可以表示為a=λ1e1+λ2e2,這里λ1,λ2∈RC.對實數λ1,λ2,λ1e1+λ2e2不一定在平面a內D.對平面a中的任一向量a,使a=λ1e1+λ2e2的實數λ1,λ2有無數對答案:∵由基底的定義可知,e1和e2是平面上不共線的兩個向量,∴實數λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0,不是空間任一向量都可以表示為a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示為a=λ1e1+λ2e2的形式,此時實數λ1,λ2有且只有一對,而對實數λ1,λ2,λ1e1+λ2e2一定在平面a內,故選A.17.某校對文明班的評選設計了a,b,c,d,e五個方面的多元評價指標,并通過經驗公式樣S=ab+cd+1e來計算各班的綜合得分,S的值越高則評價效果越好,若某班在自測過程中各項指標顯示出0<c<d<e<b<a,則下階段要把其中一個指標的值增加1個單位,而使得S的值增加最多,那么該指標應為()A.aB.bC.cD.d答案:因a,b,cde都為正數,故分子越大或分母越小時,S的值越大,而在分子都增加1的前提下,分母越小時,S的值增長越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個單位會使得S的值增加最多.故選C.18.若函數y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當0<a<1時函數y=ax在[0,1]上為單調減函數∴函數y=ax在[0,1]上的最大值與最小值分別為1,a∵函數y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當a>1時函數y=ax在[0,1]上為單調增函數∴函數y=ax在[0,1]上的最大值與最小值分別為a,1∵函數y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.19.(1+2x)7的展開式中第4項的系數是______
(用數字作答)答案:(1+2x)7的展開式的通項為Tr+1=Cr7?(2x)r∴(1+2x)7的展開式中第4項的系數是C37?23=280,故為:280.20.在調試某設備的線路設計中,要選一個電阻,調試者手中只有阻值分別為0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七種阻值不等的定值電阻,他用分數法進行優(yōu)法進行優(yōu)選試驗時,依次將電阻值從小到大安排序號,則第1個試點的電阻的阻值是(
).答案:3.5kΩ21.方程x2-y2=0表示的圖形是()
A.兩條相交直線
B.兩條平行直線
C.兩條重合直線
D.一個點答案:A22.已知點P是拋物線y2=2x上的一個動點,則點P到點(0,2)的距離與P到該拋物線準線的距離之和的最小值為()
A.
B.3
C.
D.答案:A23.已知x=-3-2i(i為虛數單位)是一元二次方程x2+ax+b=0(a,b均為實數)的一個根,則a+b=______.答案:∵x=-3-2i(i為虛數單位)是一元二次方程x2+ax+b=0(a,b均為實數)的一個根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據復數相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.24.如圖所示,圖中線條構成的所有矩形中(由6個小的正方形組成),其中為正方形的概率為
______.答案:它的長有10種取法,由長與寬的對稱性,得到它的寬也有10種取法;因為,長與寬相互獨立,所以得到長X寬的個數有:10X10=100個即總的矩形的個數有:100個長=寬的個數為:(1X1的正方形的個數)+(2X2的正方形個數)+(3X3的正方形個數)+(4X4的正方形個數)=16+9+4+1=30個即正方形的個數有:30個所以為正方形的概率是30100=0.3故為0.325.點P(x,y)是橢圓2x2+3y2=12上的一個動點,則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標準方程,得x26+y24=1,∴這個橢圓的參數方程為:x=6cosθy=2sinθ,(θ為參數)∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.26.某細胞在培養(yǎng)過程中,每15分鐘分裂一次(由1個細胞分裂成2個),則經過兩個小時后,1個這樣的細胞可以分裂成______個.答案:由于每15分鐘分裂一次,則兩個小時共分裂8次.一個這樣的細胞經過一次分裂后,由1個分裂成2個;經過2次分裂后,由1個分裂成22個;…經過8次分裂后,由1個分裂成28個.∴1個這樣的細胞經過兩個小時后,共分裂成28個,即256個.故為:25627.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當的坐標系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標軸建立空間直角坐標系.(如圖所示).設棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.28.4個人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據分類計數問題,可以列舉出所有的結果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結果,故為:929.分析如圖的程序:若輸入38,運行右邊的程序后,得到的結果是
______.答案:根據程序語句,其意義為:輸入一個x,使得9<x<100a=x\10
為去十位數b=xMOD10
去余數,即取個位數x=10*b+a
重新組合數字,用原來二位數的十位當個位,個位當十位否則說明輸入有誤故當輸入38時輸出83故為:8330.(坐標系與參數方程選做題)
直線x=-2+ty=1-t(t為參數)被圓x=3+5cosθy=-1+5sinθ(θ為參數,θ∈[0,2π))所截得的弦長為______.答案:直線和圓的參數方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長l=225-92=82.故為:8231.若3π2<α<2π,則直線xcosα+ysinα=1必不經過()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點,因而直線不過第二象限.故選B32.下列賦值語句中正確的是()
A.m+n=3
B.3=i
C.i=i2+1
D.i=j=3答案:C33.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當n=2時,左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設n=k(k≥2)時不等式成立,即S
2k=1+12+13+14+…+12k≥1+k2,當n=k+1時,不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對于任意的n≥2正整數成立.34.在平面直角坐標系xoy中,曲線C1的參數方程為x=4cosθy=2sinθ(θ為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,得曲線C2的極坐標方程為ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲線C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)設曲線C1與x軸的一個交點的坐標為P(m,0)(m>0),經過點P作曲線C2的切線l,求切線l的方程.答案:(Ⅰ)曲線C1:x216+y24=1;曲線C2:(x-1)2+(y+2)2=5;(3分)曲線C1為中心是坐標原點,焦點在x軸上,長半軸長是4,短半軸長是2的橢圓;曲線C2為圓心為(1,-2),半徑為5的圓(2分)(Ⅱ)曲線C1:x216+y24=1與x軸的交點坐標為(-4,0)和(4,0),因為m>0,所以點P的坐標為(4,0),(2分)顯然切線l的斜率存在,設為k,則切線l的方程為y=k(x-4),由曲線C2為圓心為(1,-2),半徑為5的圓得|k+2-4k|k2+1=5,解得k=3±102,所以切線l的方程為y=3±102(x-4)(3分)35.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當A=45°時,sinA=22成立.若當A=135°時,滿足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要條件.故選A.36.把兩條直線的位置關系填入結構圖中的M、N、E、F中,順序較為恰當的是()
①平行
②垂直
③相交
④斜交.
A.①②③④
B.①④②③
C.①③②④
D.②①③④
答案:C37.設是定義在正整數集上的函數,且滿足:“當成立時,總可推出成立”.那么,下列命題總成立的是A.若成立,則當時,均有成立B.若成立,則當時,均有成立C.若成立,則當時,均有成立D.若成立,則當時,均有成立答案:D解析:若成立,依題意則應有當時,均有成立,故A不成立,若成立,依題意則應有當時,均有成立,故B不成立,因命題“當成立時,總可推出成立”.“當成立時,總可推出成立”.因而若成立,則當時,均有成立,故C也不成立。對于D,事實上,依題意知當時,均有成立,故D成立。38.下列各式中錯誤的是()
A.||2=2
B.||=||
C.0?=0
D.m(n)=mn(m,n∈R)答案:C39.已知橢圓C的左右焦點坐標分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)求弦AB的長度.答案:(本小題滿分13分)(1)依題意可設橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設A(x1,y1),B(x2,y2)…(7分)聯立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)40.圓心在x軸上,且過兩點A(1,4),B(3,2)的圓的方程為______.答案:設圓心坐標為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經過兩點A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2041.復數32i+11-i的虛部是______.答案:復數32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴復數的虛部是2,故為:242.方程(x2-9)2(x2-y2)2=0表示的圖形是()
A.4個點
B.2個點
C.1個點
D.四條直線答案:D43.命題“12既是4的倍數,又是3的倍數”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數,又是3的倍數”可轉化成“12是4的倍數且12是3的倍數”故是p且q的形式;故選B.44.在空間坐標中,點B是A(1,2,3)在yOz坐標平面內的射影,O為坐標原點,則|OB|等于()
A.
B.
C.2
D.答案:B45.設a,b,c為正數,利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當且僅當a=b=c時,等號成立.46.已知中心在原點,對稱軸為坐標軸,長半軸長與短半軸長的和為92,離心率為35的橢圓的標準方程為______.答案:由題意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴橢圓的標準方程為x250+y232=1或y250+x232=1.故為x250+y232=1或y250+x232=1.47.北京期貨商會組織結構設置如下:
(1)會員代表大會下設監(jiān)事會、會長辦公會,而會員代表大會于會長辦公會共轄理事會;
(2)會長辦公會設會長,會長管理秘書長;
(3)秘書長具體分管:秘書處、規(guī)范自律委員會、服務推廣委員會、發(fā)展創(chuàng)新委員會.
根據以上信息繪制組織結構圖.答案:繪制組織結構圖:48.若直線l經過原點和點A(-2,-2),則它的斜率為()
A.-1
B.1
C.1或-1
D.0答案:B49.設α和β為不重合的兩個平面,給出下列命題:
(1)若α內的兩條相交直線分別平行于β內的兩條直線,則α平行于β;
(2)若α外一條直線l與α內的一條直線平行,則l和α平行;
(3)設α和β相交于直線l,若α內有一條直線垂直于l,則α和β垂直;
(4)直線l與α垂直的充分必要條件是l與α內的兩條直線垂直.
上面命題,真命題的序號是______(寫出所有真命題的序號)答案:由面面平行的判定定理可知,(1)正確.由線面平行的判定定理可知,(2)正確.對于(3)來說,α內直線只垂直于α和β的交線l,得不到其是β的垂線,故也得不出α⊥β.對于(4)來說,l只有和α內的兩條相交直線垂直,才能得到l⊥α.也就是說當l垂直于α內的兩條平行直線的話,l不一定垂直于α.50.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.第2卷一.綜合題(共50題)1.已知x1、x2是關于x1的方程x2-(k-2)x+k2+3k+5=0的兩個實根,那么x12+x22的最大值是[
]
A.19
B.17
C.
D.18答案:D2.兩條直線l1:x-3y+2=0與l2:x-y+2=0的夾角的大小是______.答案:由于兩條直線l1:x-3y+2=0與l2:x-y+2=0的斜率分別為33、1,設兩條直線的夾角為θ,則tanθ=|k2-k11+k2?k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故為π12.3.設隨機變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()
A.
B.
C.
D.答案:C4.直線y=kx+1與圓x2+y2=4的位置關系是()
A.相交
B.相切
C.相離
D.與k的取值有關答案:A5.若lga,lgb是方程2x2-4x+1=0的兩個根,則的值等于
A.2
B.
C.4
D.答案:A6.設雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為______.答案:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點是在x軸時,ba=23,設a=3k,b=2k,則c=13k,∴e=133.焦點在y軸時ba=32,設a=2k,b=3k,則c=13k,∴e=132.故為:133或1327.m為何值時,關于x的方程8x2-(m-1)x+(m-7)=0的兩根,
(1)為正數;
(2)一根大于2,一根小于2.答案:(1)設方程兩根為x1,x2,則∵方程的兩根為正數,∴△≥0x1+x2>0x1x2>0即[-(m-1)]2-4×8×(m-7)>0--(m-1)8>0m-78>0解得7<m≤9或m≥25.(2)令f(x)=8x2-(m-1)x+(m-7),由題意得f(2)<0,解得m>27.8.已知點A(-3,0),B(3,0),動點C到A、B兩點的距離之差的絕對值為2,點C的軌跡與直線
y=x-2交于D、E兩點,求線段DE的中點坐標及其弦長DE.答案:∵|CB|-|CA|=2<23=|AB|,∴點C的軌跡是以A、B為焦點的雙曲線,2a=2,2c=23,∴a=1,c=3,∴b=2,∴點C的軌跡方程為x2-y22=1.把直線
y=x-2代入x2-y22=1化簡可得x2+4x-6=0,△=16-4(-6)=40>0,設D、E兩點的坐標分別為(x1,y1
)、(x2,y2),∴x1+x2=-4,x1?x2=-6.∴線段DE的中點坐標為M(-2,4),DE=1+1?|x1-x2|=2?(x1
+x2)2-4x1
?x2
=216-4(-6)=45.9.實數變量m,n滿足m2+n2=1,則坐標(m+n,mn)表示的點的軌跡是()
A.拋物線
B.橢圓
C.雙曲線的一支
D.拋物線的一部分答案:A10.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數是1故今天為星期六,則今天后的第22010天是星期日故選D11.已知點P1(3,-5),P2(-1,-2),在直線P1P2上有一點P,且|P1P|=15,則P點坐標為()
A.(-9,-4)
B.(-14,15)
C.(-9,4)或(15,-14)
D.(-9,4)或(-14,15)答案:C12.圓C1x2+y2-4y-5=0與圓C2x2+y2-2x-2y+1=0位置關系是()
A.內含
B.內切
C.相交
D.外切答案:A13.正十邊形的一個內角是多少度?答案:由多邊形內角和公式180°(n-2),∴每一個內角的度數是180°(n-2)n當n=10時.得到一個內角為180°(10-2)10=144°14.用反證法證明命題“三角形中最多只有一個內角是鈍角”時,則假設的內容是()
A.三角形中有兩個內角是鈍角
B.三角形中有三個內角是鈍角
C.三角形中至少有兩個內角是鈍角
D.三角形中沒有一個內角是鈍角答案:C15.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準線,分別交準線于M,N兩點,那么∠MFN必是()
A.銳角
B.直角
C.鈍角
D.以上皆有可能答案:B16.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為717.直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量,則a=______.答案:∵直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量∴兩條直線互相平行,可得a2=2a≠3-1,解之得a=±2故為:±218.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),則實數λ的值是
______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b?(a+λb)=0,即(1,1)?(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-319.在殘差分析中,殘差圖的縱坐標為______.答案:有殘差圖的定義知道,作圖時縱坐標為殘差,橫坐標可以選為樣本編號,或身高數據,或體重的估計值,這樣做出的圖形稱為殘差圖.故為:殘差.20.下面是一個算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當x≤5時,y=10x=10,得x=1;當x>5時,y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.21.某產品的廣告費用x與銷售額y的統(tǒng)計數據如下表:
廣告費用x(萬元)
2
3
4
5
銷售額y(萬元)
27
39
48
54
根據上表可得回歸方程y=bx+a中的b為9.4,據此模型預報廣告費用為6萬元時銷售額為()
A.65.5萬元
B.66.2萬元
C.67.7萬元
D.72.0萬元答案:A22.如圖是集合的知識結構圖,如果要加入“全集”,則應該放在()
A.“集合的概念”的下位
B.“集合的表示”的下位
C.“基本關系”的下位
D.“基本運算”的下位答案:D23.已知拋物線的參數方程為(t為參數),其中p>0,焦點為F,準線為l,過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標是3,則p=(
)。答案:224.如果一個水平放置的圖形的斜二測直觀圖是一個底面為45°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是()
A.2+
B.
C.
D.1+答案:A25.賦值語句M=M+3表示的意義()
A.將M的值賦給M+3
B.將M的值加3后再賦給M
C.M和M+3的值相等
D.以上說法都不對答案:B26.已知圓錐的母線長與底面半徑長之比為3:1,一個正方體有四個頂點在圓錐的底面內,另外的四個頂點在圓錐的側面上(如圖),則圓錐與正方體的表面積之比為(
)
A.π:1
B.3π:1
C.3π:2
D.3π:4
答案:D27.設P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點P的坐標
()
A.(-8,15)
B.(0,3)
C.(-,)
D.(1,)答案:A28.把平面上一切單位向量的始點放在同一點,那么這些向量的終點所構成的圖形是()
A.一條線段
B.一段圓弧
C.圓上一群孤立點
D.一個單位圓答案:D29.不等式的解集
.答案:;解析:略30.(坐標系與參數方程選做題)
直線x=-2+ty=1-t(t為參數)被圓x=3+5cosθy=-1+5sinθ(θ為參數,θ∈[0,2π))所截得的弦長為______.答案:直線和圓的參數方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長l=225-92=82.故為:8231.2007年10月24日18時05分,在西昌衛(wèi)星發(fā)射中心,“嫦娥一號”衛(wèi)星順利升空,24分鐘后,星箭成功分離,衛(wèi)星首次進入以地心為焦點的橢圓形調相軌道,衛(wèi)星近地點為約200公里,遠地點為約51000公里.設地球的半經為R,則衛(wèi)星軌道的離心率為______(結果用R的式子表示)答案:由題意衛(wèi)星進入以地心為焦點的橢圓形調相軌道,衛(wèi)星近地點為約200公里,遠地點為約51000公里.設地球的半經為R,易知,a=25600+R,c=25400,則衛(wèi)星軌道的離心率e=2540025600+R.故為:2540025600+R.32.如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過AC的中點M,求證:PC是⊙O的切線.答案:證明:連接OC,∵PA⊥AB,∴∠PA0=90°.(1分)∵PO過AC的中點M,OA=OC,∴PO平分∠AOC.∴∠AOP=∠COP.(3分)∴在△PAO與△PCO中有OA=OC,∠AOP=∠COP,PO=PO.∴△PAO≌△PCO.(6分)∴∠PCO=∠PA0=90°.即PC是⊙O的切線.(7分)33.下列幾種說法正確的個數是()
①相等的角在直觀圖中對應的角仍然相等;
②相等的線段在直觀圖中對應的線段仍然相等;
③平行的線段在直觀圖中對應的線段仍然平行;
④線段的中點在直觀圖中仍然是線段的中點.
A.1
B.2
C.3
D.4答案:B34.為了了解1200名學生對學校某項教改試驗的意見,打算從中抽取一個容量為30的樣本,考慮采用系統(tǒng)抽樣,則分段的間隔(抽樣距)K為()
A.40
B.30
C.20
D.12答案:A35.一個單位有職工800人,其中具有高級職稱的160人,具有中級職稱的320人,具有初級職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級職稱的職工為10人,則樣本容量為()
A.10
B.20
C.40
D.50答案:C36.設F1,F2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數列,則|AB|的長為______.答案:∵|AF2|,|AB|,|BF2|成等差數列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:4337.從A處望B處的仰角為α,從B處望A處的俯角為β,則α、β的關系為()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:從點A看點B的仰角與從點B看點A的俯角互為內錯角,大小相等.仰角和俯角都是水平線與視線的夾角,故α=β.故選:B.38.大家知道,在數列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.
問:(1)這種猜想,你認為正確嗎?
(2)不管猜想是否正確,這個結論是通過什么推理方法得到的?
(3)如果結論正確,請用數學歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時,a+b+c+d=1;n=2時,16a+8b+4c+d=9;n=3時,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數學歸納法證明:①n=1時,結論成立;②假設n=k時,結論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時,左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立39.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點,n∈N*.已知OP1=(2,0),則OP2010的坐標為______.答案:A=1011,B=20AA=1011
1011
=1021A3=111
121
=1031依此類推A2009=1020101∴A2009B=1020101
20=24018∴OP2010的坐標為(2,4018)故為:(2,4018)40.如圖,在復平面內,點A表示復數z的共軛復數,則復數z對應的點是()A.AB.BC.CD.D答案:兩個復數是共軛復數,兩個復數的實部相同,下部相反,對應的點關于x軸對稱.所以點A表示復數z的共軛復數的點是B.故選B.41.(坐標系與參數方程選做題)在平面直角坐標系xOy中,曲線C1與C2的參數方程分別為x=ty=t(t為參數)和x=2cosθy=2sinθ(θ為參數),則曲線C1與C2的交點坐標為______.答案:在平面直角坐標系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2
+y2=2
可得x=1y=1,故曲線C1與C2的交點坐標為(1,1),故為(1,1).42.若隨機變量ξ~N(2,9),則隨機變量ξ的數學期望c=()
A.4
B.3
C.2
D.1答案:C43.下列函數中,與函數y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數y=1x定義域為x>0,又函數f(x)=log2x定義域x>0,故選A.44.已知a>0,且a≠1,解關于x的不等式:
答案:①當a>1時,原不等式解為{x|0<x≤loga2②當0<a<1時,原不等式解為{x|loga2≤x<0解析:原不等式等價于原不等式同解于7分由①②得1<ax<4,由③得從而1<ax≤210分①當a>1時,原不等式解為{x|0<x≤loga2②當0<a<1時,原不等式解為{x|loga2≤x<045.某班試用電子投票系統(tǒng)選舉班干部候選人.全班k名同學都有選舉權和被選舉權,他們的編號分別為1,2,…,k,規(guī)定:同意按“1”,不同意(含棄權)按“0”,令aij=1,第i號同學同意第j號同學當選.0,第i號同學不同意第j號同學當選.其中i=1,2,…,k,且j=1,2,…,k,則同時同意第1,2號同學當選的人數為()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k答案:第1,2,…,k名學生是否同意第1號同學當選依次由a11,a21,a31,…,ak1來確定(aij=1表示同意,aij=0表示不同意或棄權),是否同意第2號同學當選依次由a12,a22,…,ak2確定,而是否同時同意1,2號同學當選依次由a11a12,a21a22,…,ak1ak2確定,故同時同意1,2號同學當選的人數為a11a12+a21a22+…+ak1ak2,故選C.46.x2+(m-3)x+m=0
一個根大于1,一個根小于1,m的范圍是______.答案:設f(x)=x2+(m-3)x+m,則∵x2+(m-3)x+m=0一個根大于1,一個根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故為m<1.47.已知實數x、y滿足(x-2)2+y2+(x+2)2+y2=6,則2x+y的最大值等于______.答案:∵實數x、y滿足(x-2)2+y2+(x+2)2+y2=6,∴點(x,y)的軌跡是橢圓,其方程為x29+y25=1,所以可設x=3cosθ,y=5sinθ,則z=6cosθ+5sinθ=41sin(θ+
β)≤41,∴2x+y的最大值等于41.故為:4148.
若平面向量,,兩兩所成的角相等,||=||=1,||=3,則|++|=()
A.2
B.4
C.2或5
D.4或5答案:C49.給定橢圓C:x2a2+y2b2=1(a>b>0),稱圓心在原點O、半徑是a2+b2的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(2,0),其短軸的一個端點到點F的距離為3.
(1)求橢圓C和其“準圓”的方程;
(2)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(3)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求AB?AD的取值范圍.答案:(1)由題意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴橢圓C的方程為x23+y2=1,其“準圓”的方程為x2+y2=4;(2)由“準圓”的方程為x2+y2=4,令y=0,解得x=±2,取P(2,0),設過點P且與橢圓相切的直線l的方程為my=x-2,聯立my=x-2x23+y2=1,消去x得到關于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直線l1、l2的方程分別為:y=x-2,y=-x+2.(3)由“準圓”的方程為x2+y2=4,令y=0,解得x=±2,取點A(2,0).設點B(x0,y0),則D(x0,-y0).∴AB?AD=(x0-2,y0)?(x0-2,-y0)=(x0-2)2-y02,∵點B在橢圓x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD?AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD?AB<7+43,即AD?AB的取值范圍為[0,7+43)50.甲盒子中裝有3個編號分別為1,2,3的小球,乙盒子中裝有5個編號分別為1,2,3,4,5的小球,從甲、乙兩個盒子中各隨機取一個小球,則取出兩小球編號之積為奇數的概率為______.答案:由題意知本題是一個等可能事件的概率,試驗發(fā)生包含的事件是從兩個盒子中分別取一個小球,共有3×5=15種結果,滿足條件的事件是取出的兩個小球編號之積是奇數,可以列舉出有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)共有6種結果,∴要求的概率是615=25.故為25.第3卷一.綜合題(共50題)1.四面體ABCD中,設M是CD的中點,則化簡的結果是()
A.
B.
C.
D.答案:A2.若點P分向量AB的比為34,則點A分向量BP的比為()A.-34B.34C.-73D.73答案:由題意可得APPB=|AP||PB|=34,故
A分BP的比為BAAP=-|BA||AP|=-4+33=-73,故選C.3.已知函數①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對于f(x)定義域內的任意一個自變量x1都存在唯一個個自變量x2,使f(x1)f(x2)=3成立的函數序號是______.答案:根據題意可知:①f(x)=3lnx,x=1時,lnx沒有倒數,不成立;②f(x)=3ecosx,任一自變量f(x)有倒數,但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個自變量,函數都有倒數,成立;④f(x)=3cosx,當x=2kπ+π2時,函數沒有倒數,不成立.所以成立的函數序號為③故為③4.已知平行四邊形ABCD,下列正確的是()
A.
B.
C.
D.答案:B5.選修4-4:坐標系與參數方程
已知極點O與原點重合,極軸與x軸的正半軸重合.點A,B的極坐標分別為(2,π),(22,π4),曲線C的參數方程為答案:(Ⅰ)S△AOB=12×2×26.若A(x,5-x,2x-1),B(1,x+2,2-x),當||取最小值時,x的值等于(
)
A.
B.
C.
D.答案:C7.語句|x|≤3或|x|>5的否定是()
A.|x|≥3或|x|<5
B.|x|>3或|x|≤5
C.|x|≥3且|x|<5
D.|x|>3且|x|≤5答案:D8.某同學參加科普知識競賽,需回答三個問題,競賽規(guī)則規(guī)定:答對第一、二、三個問題分別得100分、100分、200分,答錯得0分,假設這位同學答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響,則這名同學得300分的概率為
;這名同學至少得300分的概率為
.答案:0.228;0.564解析:得300分可能是答對第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。9.某種燈泡的耐用時間超過1000小時的概率為0.2,有3個相互獨立的燈泡在使用1000小時以后,最多只有1個損壞的概率是()
A.0.008
B.0.488
C.0.096
D.0.104答案:D10.利用斜二側畫法畫直觀圖時,①三角形的直觀圖還是三角形;②平行四邊形的直觀圖還是平行四邊形;③正方形的直觀圖還是正方形;④菱形的直觀圖還是菱形.其中正確的是
______.答案:由斜二側直觀圖的畫法法則可知:①三角形的直觀圖還是三角形;正確;②平行四邊形的直觀圖還是平行四邊形;正確.③正方形的直觀圖還是正方形;應該是平行四邊形;所以不正確;④菱形的直觀圖還是菱形.也是平行四邊形,所以不正確.故為:①②11.下圖是由A、B、C、D中的哪個平面圖旋轉而得到的(
)答案:A12.已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為______.答案:∵a+2b+3c=6,∴根據柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化簡得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,當且僅當a:2b:3c=1:1:1時,即a=2,b=1,c=23時等號成立由此可得:當且僅當a=2,b=1,c=23時,a2+4b2+9c2的最小值為12故為:1213.已知=2+i,則復數z=()
A.-1+3i
B.1-3i
C.3+i
D.3-i答案:B14.設a、b、c均為正數.求證:≥.答案:證明略解析:證明
方法一
∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥
(·+·+·)2=.∴+≥.方法二
令,則∴左邊=≥=.∴原不等式成立.15.(選做題)某制藥企業(yè)為了對某種藥用液體進行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分數法進行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數為(
)。答案:716.已知A,B兩點的極坐標為(6,)和(8,),則線段AB中點的直角坐標為()
A.(,-)
B.(-,)
C.(,-)
D.(-,-)答案:D17.已知△A′B′C′是水平放置的邊長為a的正三角形△ABC的斜二測平面直觀圖,那么△A′B′C′的面積為______.答案:正三角形ABC的邊長為a,故面積為34a2,而原圖和直觀圖面積之間的關系S直觀圖S原圖=24,故直觀圖△A′B′C′的面積為6a216故為:6a216.18.一圓臺上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點M,拉一條繩子,繞圓臺的側面一周轉到B點,則這條繩子最短長為______cm.答案:畫出圓臺的側面展開圖,并還原成圓錐展開的扇形,且設扇形的圓心為O.有圖得:所求的最短距離是MB',設OA=R,圓心角是α,則由題意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,則MB'=50cm.故為:50cm.19.以知F是雙曲線x24-y212=1的左焦點,A(1,4),P是雙曲線右支上的動點,則|PF|+|PA|的最小值為______.答案:∵A點在雙曲線的兩只之間,且雙曲線右焦點為F′(4,0),∴由雙曲線性質|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5兩式相加得|PF|+|PA|≥9,當且僅當A、P、F’三點共線時等號成立.故為920.△ABC中,若有一個內角不小于120°,求證:最長邊與最短邊之比不小于3.答案:設最大角為∠A,最小角為∠C,則最大邊為a,最小邊為c因為A≥120°,所以B+C≤60°,且C≤B,所以2C≤B+C≤60°,C≤30°.所以ac=sinAsinC=sin(B+C)sinC≥sin2CsinC=2cosC≥3.21.下列函數中,與函數y=x(x≥0)有相同圖象的一個是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個函數與函數y=x
(x≥0)有相同圖象時,這兩個函數應是同一個函數.A中的函數和函數y=x
(x≥0)的值域不同,故不是同一個函數.B中的函數和函數y=x
(x≥0)具有相同的定義域、值域、對應關系,故是同一個函數.C中的函數和函數y=x
(x≥0)的值域不同,故不是同一個函數.D中的函數和函數y=x
(x≥0)的定義域不同,故不是同一個函數.綜上,只有B中的函數和函數y=x
(x≥0)是同一個函數,具有相同的圖象,故選B.22.如圖⊙0的直徑AD=2,四邊形ABCD內接于⊙0,直線MN切⊙0于點B,∠MBA=30°,則AB的長為______.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:123.點P1,P2是線段AB的2個三等分點,若P∈{P1,P2},則P分有線段AB的比λ的最大值和最小值分別為()
A.3,
B.3,
C.2,
D.2,1答案:C24.若向量a=(4,2,-4),b=(6,-3,2),則(2a-3b)?(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)?(a+2b)=-10×16+13×(-4)=-212故為-21225.用隨機數表法從100名學生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個等可能事件的概率,試驗發(fā)生包含的事件是用隨機數表法從100名學生選一個,共有100種結果,滿足條件的事件是抽取20個,∴根據等可能事件的概率公式得到P=20100=15,故選A.26.如果雙曲線的半實軸長為2,焦距為6,那么該雙曲線的離心率是()
A.
B.
C.
D.2答案:C27.已知函數f(x)=f(x+1)(x<4)2x(x≥4),則f(log23)=______.答案:因為1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故為:24.28.用黃金分割法尋找最佳點,試驗區(qū)間為[1000,2000],若第一個二個試點為好點,則第三個試點應選在(
)。答案:123629.若隨機變量ξ~N(2,9),則隨機變量ξ的數學期望c=()
A.4
B.3
C.2
D.1答案:C30.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當n=2時,左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設n=k(k≥2)時不等式成立,即S
2k=1+12+13+14+…+12k≥1+k2,當n=k+1時,不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對于任意的n≥2正整數成立.31.8的值為()
A.2
B.4
C.6
D.8答案:B32.比較大?。篴=0.20.5,b=0.50.2,則()
A.0<a<b<1
B.0<b<a<1
C.1<a<b
D.1<b<a答案:A33.在極坐標系中,點A的極坐標為(2,0),直線l的極坐標方程為ρ(cosθ+sinθ)+2=0,則點A到直線l的距離為______.答案:由題意得點A(2,0),直線l為
ρ(cosθ+sinθ)+2=0,即
x+y+2=0,∴點A到直線l的距離為
|2+0+2|2=22,故為22.34.一位運動員投擲鉛球的成績是14m,當鉛球運行的水平距離是6m時,達到最大高度4m.若鉛球運行的路線是拋物線,則鉛球出手時距地面的高度是()
A.2.25m
B.2.15m
C.1.85m
D.1.75m
答案:D35.雙曲線的漸近線方程是3x±2y=0,則該雙曲線的離心率等于______.答案:∵雙曲線的漸近線方程是3x±2y=0,∴ba=32,設a=2k,b=3k,則c=13k,∴e=ca=132.:132.36.棱長為2的正方體ABCD-A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 航空會員賬戶管理辦法
- 科技園區(qū)房產交易合同
- 建筑工程項目擔保細則
- 醫(yī)療設備招議標管理辦法
- 國際石油勘探招投標詳解
- 翻譯服務業(yè)機構裝飾施工合同
- 長途客運司機招聘合同樣本
- 智能化煤礦配件管理未來趨勢
- 商務樓宇環(huán)境檢查
- 幼兒園綠化景觀提升工程合同
- NB/T 10727-2021煤礦膏體充填開采技術規(guī)范
- YY/T 0698.3-2009最終滅菌醫(yī)療器械包裝材料第3部分:紙袋(YY/T 0698.4所規(guī)定)、組合袋和卷材(YY/T 0698.5所規(guī)定)生產用紙要求和試驗方法
- GB/T 28733-2012固體生物質燃料全水分測定方法
- GB/T 16989-2013土工合成材料接頭/接縫寬條拉伸試驗方法
- GB/T 1226-2017一般壓力表
- GA 1517-2018金銀珠寶營業(yè)場所安全防范要求
- 掘進工作面設計說明書
- 評標專家?guī)煜到y(tǒng)系統(tǒng)總體建設方案參考模板
- 頑固性高血壓的介入治療進展課件
- 三年級上冊數學課件北師大版專項復習 操作題、圖形題專項
- 黃土高原水土流失說課
評論
0/150
提交評論