2023年武漢民政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年武漢民政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年武漢民政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年武漢民政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年武漢民政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩42頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年武漢民政職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.已知f(x)=3mx2-2(m+n)x+n(m≠0)滿足f(0)?f(1)>0,設(shè)x1,x2是方程f(x)=0的兩根,則|x1-x2|的取值范圍為()

A.[,)

B.[,)

C.[,)

D.[,)答案:A2.4名學(xué)生參加3項(xiàng)不同的競(jìng)賽,則不同參賽方法有()A.34B.A43C.3!D.43答案:由題意知本題是一個(gè)分步計(jì)數(shù)問(wèn)題,首先第一名學(xué)生從三種不同的競(jìng)賽中選有三種不同的結(jié)果,第二名學(xué)生從三種不同的競(jìng)賽中選有3種結(jié)果,同理第三個(gè)和第四個(gè)同學(xué)從三種競(jìng)賽中選都有3種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×3×3×3=34故選A.3.如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=6.

(1)求證:PA⊥B1D1;

(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.答案:以D1為原點(diǎn),D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標(biāo)系,則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),P(1,1,4).(1)證明:∵AP=(-1,1,2),D1B1=(2,2,0),∴AP?D1B1=-2+2+0=0,∴PA⊥B1D1.(2)平面BDD1B1的法向量為AC=(-2,2,0).DA=(2,0,0),OP=(1,1,2).設(shè)平面PAD的法向量為n=(x,y,z),則n⊥DA,n⊥DP.∴2x=0x+y+2z=0∴x=0y=-2z.取n=(0,-2,1),設(shè)所求銳二面角為θ,則cosθ=|n?AC||n|?|AC|=|0-4+0|22×5=105.4.已知向量表示“向東航行1km”,向量表示“向南航行1km”,則向量表示()

A向東南航行km

B.向東南航行2km

C.向東北航行km

D.向東北航行2km答案:A5.如圖,⊙O與⊙O′交于

A,B,⊙O的弦AC與⊙O′相切于點(diǎn)A,⊙O′的弦AD與⊙O相切于A點(diǎn),則下列結(jié)論中正確的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.無(wú)法確定

答案:B6.函數(shù)y=a|x|(a>1)的圖象是()

A.

B.

C.

D.

答案:B7.給出命題:

①線性回歸分析就是由樣本點(diǎn)去尋找一條貼近這些點(diǎn)的直線;

②利用樣本點(diǎn)的散點(diǎn)圖可以直觀判斷兩個(gè)變量的關(guān)系是否可以用線性關(guān)系表示;

③通過(guò)回歸方程=bx+a及其回歸系數(shù)b可以估計(jì)和預(yù)測(cè)變量的取值和變化趨勢(shì);

④線性相關(guān)關(guān)系就是兩個(gè)變量間的函數(shù)關(guān)系.其中正確的命題是(

A.①②

B.①④

C.①②③

D.①②③④答案:D8.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實(shí)數(shù)a的值為______.答案:根據(jù)題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時(shí),A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時(shí),A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.9.口袋內(nèi)有100個(gè)大小相同的紅球、白球和黑球,其中有45個(gè)紅球,從中摸出1個(gè)球,摸出白球的概率為0.23,則摸出黑球的概率為______.答案:∵口袋內(nèi)有100個(gè)大小相同的紅球、白球和黑球從中摸出1個(gè)球,摸出白球的概率為0.23,∴口袋內(nèi)白球數(shù)為32個(gè),又∵有45個(gè)紅球,∴為32個(gè).從中摸出1個(gè)球,摸出黑球的概率為32100=0.32故為0.3210.△ABC中,∠A外角的平分線與此三角形外接圓相交于P,求證:BP=CP.

答案:證明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.11.與直線2x+y+1=0的距離為的直線的方程是()

A.2x+y=0

B.2x+y-2=0

C.2x+y=0或2x+y-2=0

D.2x+y=0或2x+y+2=0答案:D12.在平面直角坐標(biāo)系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,此伸縮變換公式是(

)A.B.C.D.答案:B解析:解:因?yàn)樵谄矫嬷苯亲鴺?biāo)系中,經(jīng)伸縮變換后曲線方程變換為橢圓方程,設(shè)變換為,將其代入方程中,得到x,y的關(guān)系式,對(duì)應(yīng)相等可知,選B13.如圖,在正方體OABC-O1A1B1C1中,棱長(zhǎng)為2,E是B1B的中點(diǎn),則點(diǎn)E的坐標(biāo)為()

A.(2,2,1)

B.(2,2,)

C.(2,2,)

D.(2,2,)

答案:A14.橢圓x=3cosθy=4sinθ的離心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其離心率e=ca=74.故為:74.15.若一輛汽車每天行駛的路程比原來(lái)多19km,則該汽車在8天內(nèi)行駛的路程s(km)就超過(guò)2200km;若它每天行駛的路程比原來(lái)少12km,則它行駛同樣的路程s(km)就得花9天多的時(shí)間。這輛汽車原來(lái)每天行駛的路程(km)的范圍是(

A.(259,260)

B.(258,260)

C.(257,260)

D.(256,260)答案:D16.某房間有四個(gè)門,甲要各進(jìn)、出這個(gè)房間一次,不同的走法有多少種?()

A.12

B.7

C.16

D.64答案:C17.OA、OB(O為原點(diǎn))是圓x2+y2=2的兩條互相垂直的半徑,C是該圓上任一點(diǎn),且OC=λOA+μOB,則λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故為:118.(選做題)那霉素發(fā)酵液生物測(cè)定,一般都規(guī)定培養(yǎng)溫度為(37±1)°C,培養(yǎng)時(shí)間在16小時(shí)以上,某制藥廠為了縮短時(shí)間,決定優(yōu)選培養(yǎng)溫度,試驗(yàn)范圍固定在29~50°C,精確度要求±1°C,用分?jǐn)?shù)法安排實(shí)驗(yàn),令第一試點(diǎn)在t1處,第二試點(diǎn)在t2處,則t1+t2=(

).答案:7919.圓錐曲線G的一個(gè)焦點(diǎn)是F,與之對(duì)應(yīng)的準(zhǔn)線是,過(guò)F作直線與G交于A、B兩點(diǎn),以AB為直徑作圓M,圓M與的位置關(guān)系決定G

是何種曲線之間的關(guān)系是:______

圓M與的位置相離相切相交G

是何種曲線答案:設(shè)圓錐曲線過(guò)焦點(diǎn)F的弦為AB,過(guò)A、B分別向相應(yīng)的準(zhǔn)線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2

?

e.設(shè)以AB為直徑的圓半徑為r,圓心到準(zhǔn)線的距離為d,即有r=de,橢圓的離心率

0<e<1,此時(shí)r<d,圓M與準(zhǔn)線相離;拋物線的離心率

e=1,此時(shí)r=d,圓M與準(zhǔn)線相切;雙曲線的離心率

e>1,此時(shí)r>d,圓M與準(zhǔn)線相交.故為:橢圓、拋物線、雙曲線.20.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為

______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.21.雙曲線的中心在坐標(biāo)原點(diǎn),離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),則此雙曲線的漸近線方程是______.答案:∵離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),∴ca=2,

c=2且焦點(diǎn)在x軸上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以雙曲線的漸進(jìn)方程為y=±3x.故為y=±3x22.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點(diǎn),那么()A.F=0,G≠0,E≠0B.E=0,F(xiàn)=0,G≠0C.G=0,F(xiàn)=0,E≠0D.G=0,E=0,F(xiàn)≠0答案:圓與x軸相切于原點(diǎn),則圓心在y軸上,G=0,圓心的縱坐標(biāo)的絕對(duì)值等于半徑,F(xiàn)=0,E≠0.故選C.23.構(gòu)成多面體的面最少是(

A.三個(gè)

B.四個(gè)

C.五個(gè)

D.六個(gè)答案:B24.(選做題)在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知射線θ=與曲線(t為參數(shù))相較于A,B來(lái)兩點(diǎn),則線段AB的中點(diǎn)的直角坐標(biāo)為(

)。答案:(2.5,2.5)25.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.26.將參數(shù)方程化為普通方程為(

A.y=x-2

B.y=x+2

C.y=x-2(2≤x≤3)

D.y=x+2(0≤y≤1)答案:C27.已知圖所示的矩形,其長(zhǎng)為12,寬為5.在矩形內(nèi)隨同地措施1000顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為550顆.則可以估計(jì)出陰影部分的面積約為______.答案:∵矩形的長(zhǎng)為12,寬為5,則S矩形=60∴S陰S矩=S陰60=5501000,∴S陰=33,故:33.28.對(duì)于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2012次操作后得到的數(shù)是

()A.25B.250C.55D.133答案:第1次操作為23+53=133,第2次操作為13+33+33=55,第3次操作為53+53=250,第4次操作為23+53+03=133∴操作結(jié)果,以3為周期,循環(huán)出現(xiàn)∵2012=3×670+2∴第2012次操作后得到的數(shù)與第2次操作后得到的數(shù)相同∴第2012次操作后得到的數(shù)是55故選C.29.對(duì)變量x、y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖2.由這兩個(gè)散點(diǎn)圖可以判斷()

A.變量x與y正相關(guān),u與v正相關(guān)

B.變量x與y正相關(guān),u與v負(fù)相關(guān)

C.變量x與y負(fù)相關(guān),u與v正相關(guān)

D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)答案:C30.如圖給出了一個(gè)算法程序框圖,該算法程序框圖的功能是()A.求a,b,c三數(shù)的最大數(shù)B.求a,b,c三數(shù)的最小數(shù)C.將a,b,c按從小到大排列D.將a,b,c按從大到小排列答案:逐步分析框圖中的各框語(yǔ)句的功能,第一個(gè)條件結(jié)構(gòu)是比較a,b的大小,并將a,b中的較小值保存在變量a中,第二個(gè)條件結(jié)構(gòu)是比較a,c的大小,并將a,c中的較小值保存在變量a中,故變量a的值最終為a,b,c中的最小值.由此程序的功能為求a,b,c三個(gè)數(shù)的最小數(shù).故選B31.直線kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線都通過(guò)定點(diǎn)()

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C32.計(jì)算機(jī)的程序設(shè)計(jì)語(yǔ)言很多,但各種程序語(yǔ)言都包含下列基本的算法語(yǔ)句:______,______,______,______,______.答案:計(jì)算機(jī)的程序設(shè)計(jì)語(yǔ)言很多,但各種程序語(yǔ)言都包含下列基本的算法語(yǔ)句:輸入語(yǔ)句,輸出語(yǔ)句,賦值語(yǔ)句,條件語(yǔ)句,循環(huán)語(yǔ)句.故為:輸入語(yǔ)句,輸出語(yǔ)句,賦值語(yǔ)句,條件語(yǔ)句,循環(huán)語(yǔ)句.33.已知m2+n2=1,a2+b2=2,則am+bn的最大值是()

A.1

B.

C.

D.以上都不對(duì)答案:C34.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲線如圖所示,則有()

A.μ1<μ2,σ1<σ2

B.μ1<μ2,σ1>σ2

C.μ1>μ2,σ1<σ2

D.μ1>μ2,σ1>σ2

答案:A35.四名男生三名女生排成一排,若三名女生中有兩名相鄰,但三名女生不能連排,則不同的排法數(shù)有()A.3600B.3200C.3080D.2880答案:由題意知本題需要利用分步計(jì)數(shù)原理來(lái)解,∵三名女生有且僅有兩名相鄰,∴把這兩名女生看做一個(gè)元素,與另外一名女生作為兩個(gè)元素,有C32A22種結(jié)果,把男生排列有A44,把女生在男生所形成的5個(gè)空位中排列有A52種結(jié)果,共有C32A22A44A52=2880種結(jié)果,故選D.36.不等式的解集是

)A.B.C.D.答案:B解析:當(dāng)時(shí),不等式成立;當(dāng)時(shí),不等式可化為,解得綜上,原不等式解集為故選B37.在研究打酣與患心臟病之間的關(guān)系中,通過(guò)收集數(shù)據(jù)、整理分析數(shù)據(jù)得“打酣與患心臟病有關(guān)”的結(jié)論,并且有99%以上的把握認(rèn)為這個(gè)結(jié)論是成立的.下列說(shuō)法中正確的是()

A.100個(gè)心臟病患者中至少有99人打酣

B.1個(gè)人患心臟病,則這個(gè)人有99%的概率打酣

C.100個(gè)心臟病患者中一定有打酣的人

D.100個(gè)心臟病患者中可能一個(gè)打酣的人都沒(méi)有答案:D38.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,拋物線上一點(diǎn)A的橫坐標(biāo)為x1(x1>0),過(guò)點(diǎn)A作拋物線C的切線l1交x軸于點(diǎn)D,交y軸于點(diǎn)Q,交直線l:y=p2于點(diǎn)M,當(dāng)|FD|=2時(shí),∠AFD=60°.

(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;

(2)若B位于y軸左側(cè)的拋物線C上,過(guò)點(diǎn)B作拋物線C的切線l2交直線l1于點(diǎn)P,交直線l于點(diǎn)N,求△PMN面積的最小值,并求取到最小值時(shí)的x1值.答案:(1)設(shè)A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點(diǎn)A,Q,D的坐標(biāo)可知:D為線段AQ的中點(diǎn),∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設(shè)B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯(lián)立y=x22x-x224y=x12x-x214得到點(diǎn)P(x1+x22,x1x24),聯(lián)立y=x12x-x214y=1得到點(diǎn)M(x12+2x1,1).同理N(x22+2x2,1),設(shè)h為點(diǎn)P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2

①設(shè)AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應(yīng)k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當(dāng)t∈(0,33)時(shí),S(t)單調(diào)遞減;當(dāng)t∈(33,+∞)時(shí),S(t)單調(diào)遞增,所以當(dāng)t=33時(shí),S取到最小值為1639,此時(shí)b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時(shí)的x1值為233.39.設(shè)A1,A2,A3,A4是平面直角坐標(biāo)系中兩兩不同的四點(diǎn),若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,則稱A3,A4調(diào)和分割A(yù)1,A2,已知點(diǎn)C(c,0),D(d,O)(c,d∈R)調(diào)和分割點(diǎn)A(0,0),B(1,0),則下面說(shuō)法正確的是()A.C可能是線段AB的中點(diǎn)B.D可能是線段AB的中點(diǎn)C.C,D可能同時(shí)在線段AB上D.C,D不可能同時(shí)在線段AB的延長(zhǎng)線上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是線段AB的中點(diǎn),則c=12,代入(1)d不存在,故C不可能是線段AB的中,A錯(cuò)誤;同理B錯(cuò)誤;若C,D同時(shí)在線段AB上,則0≤c≤1,0≤d≤1,代入(1)得c=d=1,此時(shí)C和D點(diǎn)重合,與條件矛盾,故C錯(cuò)誤.故選D40.構(gòu)成多面體的面最少是()

A.三個(gè)

B.四個(gè)

C.五個(gè)

D.六個(gè)答案:B41.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點(diǎn)共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點(diǎn)共圓.42.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.43.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A44.點(diǎn)P1,P2是線段AB的2個(gè)三等分點(diǎn),若P∈{P1,P2},則P分有線段AB的比λ的最大值和最小值分別為()

A.3,

B.3,

C.2,

D.2,1答案:C45.如圖,平面內(nèi)有三個(gè)向量OA,OB,OC,其中OA與OB的夾角為120°,OA與OC的夾角為30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如圖,OC=OD+OE=λOA+μOB,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.46.系數(shù)矩陣為.2132.,解為xy=12的一個(gè)線性方程組是______.答案:可設(shè)線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.47.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=______.答案:設(shè)c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.

①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.

②解①②得x=-79,y=-73.故應(yīng)填:(-79,-73).48.5顆骰子同時(shí)擲出,共擲100次則至少一次出現(xiàn)全為6點(diǎn)的概率為(

)A.B.C.D.答案:C解析:5顆骰子同時(shí)擲出,沒(méi)有全部出現(xiàn)6點(diǎn)的概率是,共擲100次至少一次出現(xiàn)全為6點(diǎn)的概率是.49.=(2,1),=(3,4),則向量在向量方向上的投影為()

A.

B.

C.2

D.10答案:C50.某學(xué)院有四個(gè)飼養(yǎng)房,分別養(yǎng)有18,54,24,48只白鼠供實(shí)驗(yàn)用,某項(xiàng)實(shí)驗(yàn)需要抽取24只白鼠,你認(rèn)為最合適的抽樣方法是()A.在每個(gè)飼養(yǎng)房各抽取6只B.把所以白鼠都編上號(hào),用隨機(jī)抽樣法確定24只C.在四個(gè)飼養(yǎng)房應(yīng)分別抽取3,9,4,8只D.先確定這四個(gè)飼養(yǎng)房應(yīng)分別抽取3,9,4,8只樣品,再由各飼養(yǎng)房將白鼠編號(hào),用簡(jiǎn)單隨機(jī)抽樣確定各自要抽取的對(duì)象答案:A中對(duì)四個(gè)飼養(yǎng)房平均攤派,但由于各飼養(yǎng)房所養(yǎng)數(shù)量不一,反而造成了各個(gè)個(gè)體入選概率的不均衡,是錯(cuò)誤的方法.B中保證了各個(gè)個(gè)體入選概率的相等,但由于沒(méi)有注意到處在四個(gè)不同環(huán)境中會(huì)產(chǎn)生差異,不如采用分層抽樣可靠性高,且統(tǒng)一編號(hào)統(tǒng)一選擇加大了工作量.C中總體采用了分層抽樣,但在每個(gè)層次中沒(méi)有考慮到個(gè)體的差層(如健壯程度,靈活程度),貌似隨機(jī),實(shí)則各個(gè)個(gè)體概率不等.故選D.第2卷一.綜合題(共50題)1.有這樣一段“三段論”推理,對(duì)于可導(dǎo)函數(shù)f(x),大前提:如果f’(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn);小前提:因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f’(0)=0,結(jié)論:所以x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中錯(cuò)誤的原因是______錯(cuò)誤(填大前提、小前提、結(jié)論).答案:∵大前提是:“對(duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn)”,不是真命題,因?yàn)閷?duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,且滿足當(dāng)x>x0時(shí)和當(dāng)x<x0時(shí)的導(dǎo)函數(shù)值異號(hào)時(shí),那么x=x0是函數(shù)f(x)的極值點(diǎn),∴大前提錯(cuò)誤,故為:大前提.2.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實(shí)數(shù)a的取值范圍是

A.[-1,1]

B.[-1,3]

C.(-1,1)

D.(-1,3)答案:D3.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.4.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個(gè)三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個(gè)三角形外接圓的方程為(x+2)2+(y-2)2=10.5.在測(cè)量某物理量的過(guò)程中,因儀器和觀察的誤差,使得n次測(cè)量分別得到a1,a2,…,an,共n個(gè)數(shù)據(jù).我們規(guī)定所測(cè)量的“量佳近似值”a是這樣一個(gè)量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。来艘?guī)定,從a1,a2,…,an推出的a=______.答案:∵所測(cè)量的“量佳近似值”a是與其他近似值比較,a與各數(shù)據(jù)的差的平方和最?。鶕?jù)均值不等式求平方和的最小值知這些數(shù)的底數(shù)要盡可能的接近,∴a是所有數(shù)字的平均數(shù),∴a=a1+a2+…+ann,故為:a1+a2+…+ann6.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.7.(《幾何證明選講》選做題)如圖,在Rt△ABC中,∠C=90°,⊙O分別切AC、BC于M、N,圓心O在AB上,⊙O的半徑為4,OA=5,則OB的長(zhǎng)為______.答案:連接OM,ON,則∵⊙O分別切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN為正方形∵⊙O的半徑為4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故為:2038.若向量=(1,λ,2),=(2,-1,2)且與的夾角余弦為,則λ等于(

A.2

B.-2

C.-2或

D.2或答案:C9.給出20個(gè)數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個(gè)求和問(wèn)題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.10.若直線x-y-1=0與直線x-ay=0的夾角為,則實(shí)數(shù)a等于()

A.

B.0

C.

D.0或答案:D11.甲、乙、丙、丁四位同學(xué)各自對(duì)A、B兩個(gè)變量的線性相關(guān)性作試驗(yàn),并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如表:

則哪位同學(xué)的實(shí)驗(yàn)結(jié)果體現(xiàn)A、B兩個(gè)變量更強(qiáng)的線性相關(guān)性()

A.丙

B.乙

C.甲

D.丁答案:C12.(x+2y)4展開式中各項(xiàng)的系數(shù)和為______.答案:令x=y=1,可得(1+2)4=81故為:81.13.在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點(diǎn)的極坐標(biāo)為

______.答案:兩條曲線的普通方程分別為x2+y2=2y,x=-1.解得x=-1y=1.由x=ρcosθy=ρsinθ得點(diǎn)(-1,1),極坐標(biāo)為(2,3π4).故填:(2,3π4).14.棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點(diǎn),則直線EF被球O截得的線段長(zhǎng)為()

A.

B.1

C.1+

D.答案:D15.已知兩點(diǎn)P1(2,-1)、P2(0,5),點(diǎn)P在P1P2延長(zhǎng)線上,且滿足P1P2=-2PP2,則P點(diǎn)的坐標(biāo)為______.答案:設(shè)分點(diǎn)P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).16.沿著正四面體OABC的三條棱OA、OB、OC的方向有大小等于1、2、3的三個(gè)力f1、f2、f3.試求此三個(gè)力的合力f的大小以及此合力與三條棱所夾角的余弦.答案:用a、b、c分別代表棱OA、OB、OC上的三個(gè)單位向量,則f1=a,f2=2b,f3=3c,則f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小為5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.17.已知⊙C1:x2+y2+2x+8y-8=0,⊙C2:x2+y2-4x-4y-2=0,則的位置關(guān)系為()

A.相切

B.相離

C.相交

D.內(nèi)含答案:C18.設(shè)a∈(0,1)∪(1,+∞),對(duì)任意的x∈(0,12],總有4x≤logax恒成立,則實(shí)數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當(dāng)0<x≤12時(shí),函數(shù)y=4x的圖象如下圖所示:∵對(duì)任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點(diǎn)時(shí),a=22,故虛線所示的y=logax的圖象對(duì)應(yīng)的底數(shù)a應(yīng)滿足22<a<1.故為:(22,1).19.平行投影與中心投影之間的區(qū)別是

______.答案:平行投影與中心投影之間的區(qū)別是平行投影的投影線互相平行,而中心投影的投影線交于一點(diǎn),故為:平行投影的投影線互相平行,而中心投影的投影線交于一點(diǎn)20.求證:若圓內(nèi)接五邊形的每個(gè)角都相等,則它為正五邊形.答案:證明:設(shè)圓內(nèi)接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個(gè)三角形∵OA=OB=OC=OD=OE=半徑,∴有五個(gè)等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因?yàn)樗袃?nèi)角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA

(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形21.某年級(jí)共有210名同學(xué)參加數(shù)學(xué)期中考試,隨機(jī)抽取10名同學(xué)成績(jī)?nèi)缦拢?/p>

成績(jī)(分)506173859094人數(shù)221212則總體標(biāo)準(zhǔn)差的點(diǎn)估計(jì)值為______(結(jié)果精確到0.01).答案:由題意知本題需要先做出這組數(shù)據(jù)的平均數(shù)50×2+61×2+73+2×85+90+2×9410=74.9,這組數(shù)據(jù)的總體方差是(2×24.92+1.92+2×13.92+15.12+2×19.12)÷10=309.76,∴總體標(biāo)準(zhǔn)差是309.76≈17.60,故為:17.60.22.若曲線x24+k+y21-k=1表示雙曲線,則k的取值范圍是

______.答案:要使方程為雙曲線方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故為(-∞,-4)∪(1,+∞)23.下列關(guān)于結(jié)構(gòu)圖的說(shuō)法不正確的是()

A.結(jié)構(gòu)圖中各要素之間通常表現(xiàn)為概念上的從屬關(guān)系和邏輯上的先后關(guān)系

B.結(jié)構(gòu)圖都是“樹形”結(jié)構(gòu)

C.簡(jiǎn)潔的結(jié)構(gòu)圖能更好地反映主體要素之間關(guān)系和系統(tǒng)的整體特點(diǎn)

D.復(fù)雜的結(jié)構(gòu)圖能更詳細(xì)地反映系統(tǒng)中各細(xì)節(jié)要素及其關(guān)系答案:B24.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()

A.3

B.

C.

D.4答案:B25.(坐標(biāo)系與參數(shù)方程)

從極點(diǎn)O作直線與另一直線ρcosθ=4相交于點(diǎn)M,在OM上取一點(diǎn)P,使OM?OP=12.

(1)求點(diǎn)P的軌跡方程;

(2)設(shè)R為直線ρcosθ=4上任意一點(diǎn),試求RP的最小值.答案:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(ρ,θ),M的坐標(biāo)為(ρ0,θ),則ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即為所求的軌跡方程.(2)由(1)知P的軌跡是以(32,0)為圓心,半徑為32的圓,而直線l的解析式為x=4,所以圓與x軸的交點(diǎn)坐標(biāo)為(3,0),易得RP的最小值為126.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α內(nèi)的三點(diǎn),設(shè)平面α的法向量a=(x,y,z),則x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α?AB=0,α?AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故為2:3:-4.27.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()

A.a(chǎn)<b<c<d

B.a(chǎn)<b<d<c

C.b<a<d<c

D.b<a<c<d

答案:C28.已知a>0,且a≠1,解關(guān)于x的不等式:

答案:①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<0解析:原不等式等價(jià)于原不等式同解于7分由①②得1<ax<4,由③得從而1<ax≤210分①當(dāng)a>1時(shí),原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時(shí),原不等式解為{x|loga2≤x<029.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.30.已知ABCD是平行四邊形,P點(diǎn)是ABCD所在平面外的一點(diǎn),連接PA、PB、PC、PD.設(shè)點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.

(1)試用向量方法證明E、F、G、H四點(diǎn)共面;

(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)

分別延長(zhǎng)PE、PF、PG、PH交對(duì)邊于M、N、Q、R點(diǎn),因?yàn)镋、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點(diǎn),順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點(diǎn)共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點(diǎn),∴平面EFGH∥平面ABCD.31.設(shè)a,b,λ都為正數(shù),且a≠b,對(duì)于函數(shù)y=x2(x>0)圖象上兩點(diǎn)A(a,a2),B(b,b2).

(1)若AC=λCB,則點(diǎn)C的坐標(biāo)是______;

(2)過(guò)點(diǎn)C作x軸的垂線,交函數(shù)y=x2(x>0)的圖象于D點(diǎn),由點(diǎn)C在點(diǎn)D的上方可得不等式:______.答案:(1)設(shè)點(diǎn)C(x,y),因?yàn)辄c(diǎn)A(a,a2),B(b,b2),AC=λCB,則(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因?yàn)辄c(diǎn)C在點(diǎn)D的上方,則y>yD,所以a2+λb21+λ>(a+λb1+λ)232.給定兩個(gè)長(zhǎng)度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].33.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個(gè)數(shù)為(

)

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.無(wú)窮多個(gè)答案:C34.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個(gè)動(dòng)點(diǎn),求PM的最小值.答案:過(guò)C作CM⊥AB,連接PM,因?yàn)镻C⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時(shí)PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.35.對(duì)于空間中的三個(gè)向量,

,它們一定是()

A.共面向量

B.共線向量

C.不共面向量

D.以上均不對(duì)答案:A36.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()

A.若2x+1是整數(shù),則x∈Z

B.若2x+1是奇數(shù),則x∈Z

C.若2x+1是偶數(shù),則x∈Z

D.若2x+1能被3整除,則x∈Z

E.若2x+1是整數(shù),則x∈Z答案:A37.若向量a=(4,2,-4),b=(6,-3,2),則(2a-3b)?(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)?(a+2b)=-10×16+13×(-4)=-212故為-21238.教學(xué)大樓共有五層,每層均有兩個(gè)樓梯,由一層到五層的走法有()

A.10種

B.25種

C.52種

D.24種答案:D39.已知當(dāng)m∈R時(shí),函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.答案:(1)m=0時(shí),f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時(shí)a∈R.(2)m≠0時(shí),由題意知,方程mx2+x-(m+a)=0恒有實(shí)數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時(shí),a∈R;m≠0時(shí),a∈[-1,1].40.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______

時(shí),方程的解集是有限集;滿足條件______

時(shí),方程的解集是無(wú)限集;滿足條件______

時(shí),方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個(gè)解時(shí),為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時(shí),方程有無(wú)數(shù)組解,方程的解集是無(wú)限集;滿足條件

a=0,b≠0

時(shí),方程無(wú)解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;

a=0,b≠0.41.圓心在x軸上,且過(guò)兩點(diǎn)A(1,4),B(3,2)的圓的方程為______.答案:設(shè)圓心坐標(biāo)為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過(guò)兩點(diǎn)A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2042.過(guò)點(diǎn)M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設(shè)所求直線與已知直線l1,l2分別交于A、B兩點(diǎn).∵點(diǎn)B在直線l2:2x+y-8=0上,故可設(shè)B(t,8-2t).又M(0,1)是AB的中點(diǎn),由中點(diǎn)坐標(biāo)公式得A(-t,2t-6).∵A點(diǎn)在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.43.已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=x④y=2x+1;其中為“B型直線”的是()

A.①③

B.①②

C.③④

D.①④答案:B44.(1+2x)10的展開式的第4項(xiàng)是______.答案:(1+2x)10的展開式的第4項(xiàng)為T4=C310

(2X)3=960x3,故為960x3.45.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問(wèn)題的程序框圖;

(2)以下是解決該問(wèn)題的一個(gè)程序,但有幾處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.

i=1S=1n=0DO

S<=500

S=S+i

i=i+1

n=n+1WENDPRINT

n+1END.答案:(1)程序框圖如左圖所示.或者,如右圖所示:(2)①DO應(yīng)改為WHILE;

②PRINT

n+1

應(yīng)改為PRINT

n;

③S=1應(yīng)改為S=0.46.(文科做)

f(x)=1x

(x<0)(13)x(x≥0),則不等式f(x)≥13的解集是______.答案:x<0時(shí),f(x)=1x≥13,解得x∈?;x≥0時(shí),f(x)=(13)x≥13,解得x≤1,故0≤x≤1.綜上所述,不等式f(x)≥13的解集為{x|0≤x≤1}.故為:{x|0≤x≤1}.47.已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個(gè)小組分別獨(dú)立開展該種子的發(fā)芽試驗(yàn),每次試驗(yàn)種一粒種子,假定某次試驗(yàn)種子發(fā)芽,則稱該次試驗(yàn)是成功的,如果種子沒(méi)有發(fā)芽,則稱該次試驗(yàn)是失敗的.

(1)第一個(gè)小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;

(2)第二個(gè)小組進(jìn)行試驗(yàn),到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.答案:(1)(2)解析:(1)第一個(gè)小組做了三次試驗(yàn),至少兩次試驗(yàn)成功的概率是P(A)=·+=.(2)第二個(gè)小組在第4次成功前,共進(jìn)行了6次試驗(yàn),其中三次成功三次失敗,且恰有兩次連續(xù)失敗,其中各種可能的情況種數(shù)為=12.因此所求的概率為P(B)=12×·=.48.若直線ax+by+1=0與圓x2+y2=1相離,則點(diǎn)P(a,b)的位置是()

A.在圓上

B.在圓外

C.在圓內(nèi)

D.以上都有可能答案:C49.解不等式logx(2x+1)>logx2.答案:當(dāng)0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;當(dāng)x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.綜上所述,原不等式的解集為{x|0<x<12或x>1}.50.若以(y+2)2=4(x-1)上任一點(diǎn)P為圓心作與y軸相切的圓,那么這些圓必定過(guò)平面內(nèi)的點(diǎn)()

A.(1,-2)

B.(3,-2)

C.(2,-2)

D.不存在這樣的點(diǎn)答案:C第3卷一.綜合題(共50題)1.已知鐳經(jīng)過(guò)100年,質(zhì)量便比原來(lái)減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過(guò)x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100xD.0.9576100x答案:由題意可得,對(duì)于函數(shù),當(dāng)x=100時(shí),y=95.76%=0.9576,結(jié)合選項(xiàng)檢驗(yàn)選項(xiàng)A:x=100,y=0.0424,故排除A選項(xiàng)B:x=100,y=0.9576,故B正確故選:B解析:已知鐳經(jīng)過(guò)100年,質(zhì)量便比原來(lái)減少4.24%,設(shè)質(zhì)量為1的鐳經(jīng)過(guò)x年后的剩留量為y,則y=f(x)的函數(shù)解析式為(x≥0)()A.0.0424x100B.0.9576x100C.0.0424100x2.已知復(fù)數(shù)w滿足w-4=(3-2w)i(i為虛數(shù)單位),z=5w+|w-2|,求一個(gè)以z為根的實(shí)系數(shù)一元二次方程.答案:[解法一]∵復(fù)數(shù)w滿足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若實(shí)系數(shù)一元二次方程有虛根z=3+i,則必有共軛虛根.z=3-i.∵z+.z=6,z?.z=10,∴所求的一個(gè)一元二次方程可以是x2-6x+10=0.[解法二]設(shè)w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].3.過(guò)點(diǎn)(-1,3)且垂直于直線x-2y+3=0的直線方程為(

A.2x+y-1=0

B.2x+y-5=0

C.x+2y-5=0

D.x-2y+7=0答案:A4.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過(guò)A、B兩點(diǎn)分別作⊙O的切線,兩切線交于點(diǎn)P.若已知⊙O的半徑為1,則△PAB的周長(zhǎng)為______.答案:∵AC是⊙O的直徑,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP為切線,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴周長(zhǎng)=33.故填:33.5.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A6.分析如圖的程序:若輸入38,運(yùn)行右邊的程序后,得到的結(jié)果是

______.答案:根據(jù)程序語(yǔ)句,其意義為:輸入一個(gè)x,使得9<x<100a=x\10

為去十位數(shù)b=xMOD10

去余數(shù),即取個(gè)位數(shù)x=10*b+a

重新組合數(shù)字,用原來(lái)二位數(shù)的十位當(dāng)個(gè)位,個(gè)位當(dāng)十位否則說(shuō)明輸入有誤故當(dāng)輸入38時(shí)輸出83故為:837.在(1+2x)5的展開式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開式的通項(xiàng)公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.8.如圖,已知Rt△ABC的兩條直角邊AC,BC的長(zhǎng)分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD=______cm.答案:∵易知AB=32+42=5,又由切割線定理得BC2=BD?AB,∴42=BD?5∴BD=165.故為:1659.已知邊長(zhǎng)為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因?yàn)檎叫蔚倪呴L(zhǎng)等于1所以|AB+BC+CD|=|AD|

=1故為:110.在用樣本頻率估計(jì)總體分布的過(guò)程中,下列說(shuō)法正確的是()A.總體容量越大,估計(jì)越精確B.總體容量越小,估計(jì)越精確C.樣本容量越大,估計(jì)越精確D.樣本容量越小,估計(jì)越精確答案:∵用樣本頻率估計(jì)總體分布的過(guò)程中,估計(jì)的是否準(zhǔn)確與總體的數(shù)量無(wú)關(guān),只與樣本容量在總體中所占的比例有關(guān),∴樣本容量越大,估計(jì)的月準(zhǔn)確,故選C.11.盒中裝有形狀、大小完全相同的5個(gè)球,其中紅色球3個(gè),黃色球2個(gè).若從中隨機(jī)取出2個(gè)球,則所取出的2個(gè)球顏色不同的概率等于______.答案:從中隨機(jī)取出2個(gè)球,每個(gè)球被取到的可能性相同,是古典概型從中隨機(jī)取出2個(gè)球,所有的取法共有C52=10所取出的2個(gè)球顏色不同,所有的取法有C31?C21=6由古典概型概率公式知P=610=35故為3512.已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是()

A.2

B.6

C.4

D.12答案:C13.直線l1:x+3=0與直線l2:x+3y-1=0的夾角的大小為______.答案:由于直線l1:x+3=0的斜率不存在,故它的傾斜角為90°,直線l2:x+3y-1=0的斜率為-33,故它的傾斜角為150>,故這兩條直線的夾角為60°,故為60°.14.如圖程序輸出的結(jié)果是()

A.3,4

B.4,4

C.3,3

D.4,3

答案:B15.若點(diǎn)M到定點(diǎn)F和到定直線l的距離相等,則下列說(shuō)法正確的是______.

①點(diǎn)M的軌跡是拋物線;

②點(diǎn)M的軌跡是一條與x軸垂直的直線;

③點(diǎn)M的軌跡是拋物線或一條直線.答案:當(dāng)點(diǎn)F不在直線l上時(shí),點(diǎn)M的軌跡是以F為焦點(diǎn)、l為準(zhǔn)線的拋物線;而當(dāng)點(diǎn)F在直線l上時(shí),點(diǎn)M的軌跡是一條過(guò)點(diǎn)F,且與l垂直的直線.故為:③16.設(shè)ABC是坐標(biāo)平面上的一個(gè)三角形,P為平面上一點(diǎn)且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長(zhǎng)交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C17.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實(shí)數(shù)m=______.答案:當(dāng)m2-5m+6=0m2-3m≠0時(shí),即m=2或m=3m≠0且m≠3?m=2時(shí)復(fù)數(shù)z為純虛數(shù).故為:2.18.若函數(shù)y=f(x)的定義域是[12,2],則函數(shù)y=f(log2x)的定義域?yàn)開_____.答案:由題意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故為:[2,4].19.已知平面直角坐標(biāo)系內(nèi)三點(diǎn)O(0,0),A(1,1),B(4,2)

(Ⅰ)求過(guò)O,A,B三點(diǎn)的圓的方程,并指出圓心坐標(biāo)與圓的半徑.

(Ⅱ)求過(guò)點(diǎn)C(-1,0)與條件(Ⅰ)的圓相切的直線方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴線段OA中點(diǎn)坐標(biāo)為(12,12),線段OB的中點(diǎn)坐標(biāo)為(2,1),kOA=1,kOB=12,∴線段OA垂直平分線的方程為y-12=-(x-12),線段OB垂直平分線的方程為y-1=12(x-2),聯(lián)立兩方程解得:x=4y=-3,即圓心(4,-3),半徑r=42+(-3)2=5,則所求圓的方程為x2+y2-8x+6y=0,圓心是(4,-3)、半徑r=5;(Ⅱ)分兩種情況考慮:當(dāng)切線方程斜率不存在時(shí),直線x=-1滿足題意;當(dāng)斜率存在時(shí),設(shè)為k,切線方程為y=k(x+1),即kx-y+k=0,∴圓心到切線的距離d=r,即|5k+3|k2+1=5,解得:k=815,此時(shí)切線方程為y=815(x+1),綜上,所求切線方程為x=-1或y=815(x+1).20.下列幾何體各自的三視圖中,有且僅有兩個(gè)視圖相同的是()

A.①②B.①③C.①④D.②④答案:正方體的三視圖都相同,而三棱臺(tái)的三視圖各不相同,圓錐和正四棱錐的,正視圖和側(cè)視圖相同,所以,正確為D.故選D21.如圖,△ABC中,CD=2DB,設(shè)AD=mAB+nAC(m,n為實(shí)數(shù)),則m+n=______.答案:∵CD=2DB,∴B、C、D三點(diǎn)共線,由三點(diǎn)共線的向量表示,我們易得AD=23AB+13AC,由平面向量基本定理,我們易得m=23,n=13,∴m+n=1故為:122.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數(shù)是1故今天為星期六,則今天后的第22010天是星期日故選D23.已知=2+i,則復(fù)數(shù)z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B24.如圖示程序運(yùn)行后的輸出結(jié)果為______.答案:該程序的作用是求數(shù)列ai=2i+3中滿足條件的ai的值∵最終滿足循環(huán)條件時(shí)i=9∴ai的值為21故為:2125.化簡(jiǎn)下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC26.對(duì)總數(shù)為N的一批零件抽取一個(gè)容量為30的樣本,若每個(gè)零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個(gè)零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.27.如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,連接DB,若∠D=20°,則∠DBE的大小為()

A.20°

B.40°

C.60°

D.70°答案:D28.若圖中的直線l1,l2,l3的斜率為k1,k2,k3則()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C29.已知2a=3b=6c則有()

A.∈(2,3)

B.∈(3,4)

C.∈(4,5)

D.∈(5,6)答案:C30.集合{0,1}的子集有()個(gè).A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:根據(jù)題意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4個(gè),故選D.31.請(qǐng)寫出所給三視圖表示的簡(jiǎn)單組合體由哪些幾何體組成.______.答案:由已知中的三視圖我們可以判斷出該幾何體是由一個(gè)底面面積相等的圓錐和圓柱組合而成故為:圓柱體,圓錐體32.設(shè)集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M與P的關(guān)系為______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故為M=P.33.設(shè)a,b,c都是正數(shù),求證:bca+cab+abc≥a+b+c.答案:證明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.34.某校有老師300人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為n的樣本,已知從女學(xué)生中抽取的人數(shù)為80,則n=()

A.171

B.184

C.200

D.392答案:C35.極坐標(biāo)系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點(diǎn)).答案:∵極坐標(biāo)系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標(biāo)系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|

=

3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.36.過(guò)點(diǎn)P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點(diǎn)P平分,該直線的方程是()

A.4x-y-6=0

B.3x+2y-7=0

C.5x-y-15=0

D.5x+y-15=0答案:C37.雙曲線x2-4y2=4的兩個(gè)焦點(diǎn)F1、F2,P是雙曲線上的一點(diǎn),滿足·=0,則△F1PF2的面積為()

A.1

B.

C.2

D.答案:A38.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒(méi)有整數(shù)根”正確的假設(shè)是方程存在實(shí)數(shù)根x0為()

A.整數(shù)

B.奇數(shù)或偶數(shù)

C.正整數(shù)或負(fù)整數(shù)

D.自然數(shù)或負(fù)整數(shù)答案:A39.如圖:在長(zhǎng)方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點(diǎn),且EB=FB=1.

(1)求二面角C-DE-C1的大??;

(2)求異面直線EC1與FD1所成角的大??;

(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點(diǎn)AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標(biāo)系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設(shè)向量n=(x,y,z)與平面C1DE垂直,則有n⊥D

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論