版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年遼寧輕工職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.直線l過橢圓x24+y23=1的右焦點(diǎn)F2并與橢圓交與A、B兩點(diǎn),則△ABF1的周長(zhǎng)是()A.4B.6C.8D.16答案:根據(jù)題意結(jié)合橢圓的定義可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因?yàn)閨AF2|+|BF2|=|AB|,所以△ABF1的周長(zhǎng)為:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故選C.2.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因?yàn)楹瘮?shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點(diǎn)對(duì)稱,所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.3.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi),任取2個(gè)球,那么下面互斥而不對(duì)立的兩個(gè)事件是()
A.恰有1個(gè)白球;恰有2個(gè)白球
B.至少有1個(gè)白球;都是白球
C.至少有1個(gè)白球;
至少有1個(gè)紅球
D.至少有1個(gè)白球;
都是紅球答案:A4.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()
A.B與C互斥
B.A與C互斥
C.任意兩個(gè)事件均互斥
D.任意兩個(gè)事件均不互斥答案:B5.輸入3個(gè)數(shù),輸出其中最大的公約數(shù),編程序完成上述功能.答案:INPUT
m,n,kr=m
MOD
nWHILE
r<>0m=nn=rr=m
MOD
nWENDr=k
MOD
nWHILE
r<>0k=nn=rr=k
MOD
nWENDPRINT
nEND6.請(qǐng)輸入一個(gè)奇數(shù)n的BASIC語句為______.答案:INPUT表示輸入語句,輸入一個(gè)奇數(shù)n的BASIC語句為:INPUT“輸入一個(gè)奇數(shù)n”;n.故為:INPUT“輸入一個(gè)奇數(shù)n”;n.7.(文)函數(shù)f(x)=x+2x(x∈(0
,
2
]
)的值域是______.答案:f(x)=x+2x≥
22當(dāng)且僅當(dāng)x=2時(shí)取等號(hào)該函數(shù)在(0,2)上單調(diào)遞減,在(2,2]上單調(diào)遞增∴當(dāng)x=2時(shí)函數(shù)取最小值22,x趨近0時(shí),函數(shù)值趨近無窮大故函數(shù)f(x)=x+2x(x∈(0
,
2
]
)的值域是[22,+∞)故為:[22,+∞)8.如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長(zhǎng)后交圓于點(diǎn)E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B9.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故選A.10.若長(zhǎng)方體的三個(gè)面的對(duì)角線長(zhǎng)分別是a,b,c,則長(zhǎng)方體體對(duì)角線長(zhǎng)為()A.a(chǎn)2+b2+c2B.12a2+b2+c2C.22a2+b2+c2D.32a2+b2+c2答案:解析:設(shè)同一頂點(diǎn)的三條棱分別為x,y,z,則x2+y2=a2,y2+z2=b2,x2+z2=c2得x2+y2+z2=12(a2+b2+c2),則對(duì)角線長(zhǎng)為12(a2+b2+c2)=22a2+b2+c2.故選C.11.平行投影與中心投影之間的區(qū)別是
______.答案:平行投影與中心投影之間的區(qū)別是平行投影的投影線互相平行,而中心投影的投影線交于一點(diǎn),故為:平行投影的投影線互相平行,而中心投影的投影線交于一點(diǎn)12.集合{1,2,3}的真子集總共有()A.8個(gè)B.7個(gè)C.6個(gè)D.5個(gè)答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個(gè).故選B.13.已知不等式a≤對(duì)x取一切負(fù)數(shù)恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對(duì)x取一切負(fù)數(shù)恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.14.已知A(-4,6,-1),B(4,3,2),則下列各向量中是平面AOB(O是坐標(biāo)原點(diǎn))的一個(gè)法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:設(shè)平面AOB(O是坐標(biāo)原點(diǎn))的一個(gè)法向量是u=(x,y,z)則u?OA=0u?OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故選B.15.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.16.書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,∴從中任取一本,不同的取法有5+4+5=14種故選A.17.若直線x+y=m與圓x=mcosφy=msinφ(φ為參數(shù),m>0)相切,則m為
______.答案:圓x=mcosφy=msinφ的圓心為(0,0),半徑為m∵直線x+y=m與圓相切,∴d=r即|m|2=m,解得m=2故為:218.證明不等式的最適合的方法是()
A.綜合法
B.分析法
C.間接證法
D.合情推理法答案:B19.直線l1:y=ax+b,l2:y=bx+a
(a≠0,b≠0,a≠b),在同一坐標(biāo)系中的圖形大致是()
A.
B.
C.
D.
答案:C20.已知點(diǎn)A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為______.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|
|n|=231×22+1+(23)2=27.故為27.21.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:D22.集合M={(x,y)|xy≤0,x,y∈R}的意義是()A.第二象限內(nèi)的點(diǎn)集B.第四象限內(nèi)的點(diǎn)集C.第二、四象限內(nèi)的點(diǎn)集D.不在第一、三象限內(nèi)的點(diǎn)的集合答案:∵xy≤0,∴xy<0或xy=0當(dāng)xy<0時(shí),則有x<0y>0或x>0y<0,點(diǎn)(x,y)在二、四象限,當(dāng)xy=0時(shí),則有x=0或y=0,點(diǎn)(x,y)在坐標(biāo)軸上,故選D.23.如圖,某公司制造一種海上用的“浮球”,它是由兩個(gè)半球和一個(gè)圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.
(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?
(2)假設(shè)該“浮球”的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元.求該“浮球”的建造費(fèi)用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個(gè)半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個(gè)半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元,∴該“浮球”的建造費(fèi)用為2π×20+π×30=70π≈220元.24.對(duì)于非零的自然數(shù)n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸相交于An,Bn兩點(diǎn),若以|AnBn|表示這兩點(diǎn)間的距離,則|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值
等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故為:20092010.25.已知兩個(gè)非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(duì)(A,B)個(gè)數(shù)為7若A={1,2,}或{1,3}或{2,3}時(shí),集合B中至少有一個(gè)元素,故每種情況下,B都有4種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為4×3=12若A={1}或{3}或{2}時(shí)集合中至少有二個(gè)元素,故每種情況下,B都有2種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為2×3=6綜上,符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是7+12+6=25故選C26.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C27.在正方形ABCD中,已知它的邊長(zhǎng)為1,設(shè)=,=,=,則|++|的值為(
)
A.0
B.3
C.2+
D.2答案:D28.方程x2-(k+2)x+1-3k=0有兩個(gè)不等實(shí)根x1,x2,且0<x1<1<x2<2,則實(shí)數(shù)k的取值范圍為______.答案:構(gòu)造函數(shù)f(x)=x2-(k+2)x+1-3k∵方程x2-(k+2)x+1-3k=0有兩個(gè)不等實(shí)根x1,x2,且0<x1<1<x2<2,∴f(0)>0f(1)<0f(2)>0∴1-3k>0-4k<01-5k>0∴0<k<15∴實(shí)數(shù)k的取值范圍為(0,15)故為:(0,15)29.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲線如圖所示,則有()
A.μ1<μ2,σ1<σ2
B.μ1<μ2,σ1>σ2
C.μ1>μ2,σ1<σ2
D.μ1>μ2,σ1>σ2
答案:A30.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.31.設(shè)P,Q為△ABC內(nèi)的兩點(diǎn),且AP=mAB+nAC
(m,n>0)AQ=pAB+qAC
(p,q>0),則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)P到邊AB的距離為h1,Q到邊AB的距離為h2,則△ABP的面積與△ABQ的面積之比為h1h2,設(shè)AB邊上的單位法向量為e,AB?e=0,則h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故為n:q.32.棱長(zhǎng)為a的正四面體中,AB?BC+AC?BD=______.答案:棱長(zhǎng)為a的正四面體中,AB=BC=a,且AB與BC的夾角為120°,AC⊥BD.∴AB?BC+AC?BD=a?acos120°+0=-a22,故為:-12.33.雙曲線x2n-y2=1(n>1)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,P在雙曲線上,且滿足|PF1|+|PF2|=2n+2,則△PF1F2的面積為______.答案:令|PF1|=x,|PF2|=y,依題意可知x+y=2n+2x-y=2n解得x=n+2+n,y=n+2-n,∴x2+y2=(2n+2+n)2+(2n+2-n)2=4n+4∵|F1F2|=2n+1∴|F1F2|2=4n+4∴x2+y2|F1F2|2∴△PF1F2為直角三角形∴△PF1F2的面積為12xy=(2n+2+n)(n+2-n)=1故為:1.34.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為x=4cosθy=2sinθ(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,得曲線C2的極坐標(biāo)方程為ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲線C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)設(shè)曲線C1與x軸的一個(gè)交點(diǎn)的坐標(biāo)為P(m,0)(m>0),經(jīng)過點(diǎn)P作曲線C2的切線l,求切線l的方程.答案:(Ⅰ)曲線C1:x216+y24=1;曲線C2:(x-1)2+(y+2)2=5;(3分)曲線C1為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)半軸長(zhǎng)是4,短半軸長(zhǎng)是2的橢圓;曲線C2為圓心為(1,-2),半徑為5的圓(2分)(Ⅱ)曲線C1:x216+y24=1與x軸的交點(diǎn)坐標(biāo)為(-4,0)和(4,0),因?yàn)閙>0,所以點(diǎn)P的坐標(biāo)為(4,0),(2分)顯然切線l的斜率存在,設(shè)為k,則切線l的方程為y=k(x-4),由曲線C2為圓心為(1,-2),半徑為5的圓得|k+2-4k|k2+1=5,解得k=3±102,所以切線l的方程為y=3±102(x-4)(3分)35.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=(12)x是指數(shù)函數(shù)(小前提),所以函數(shù)y=(12)x是增函數(shù)(結(jié)論)”,上面推理的錯(cuò)誤在于______(大前提、小前提、結(jié)論).答案:∵當(dāng)a>1時(shí),函數(shù)是一個(gè)增函數(shù),當(dāng)0<a<1時(shí),指數(shù)函數(shù)是一個(gè)減函數(shù)∴y=ax是增函數(shù)這個(gè)大前提是錯(cuò)誤的,從而導(dǎo)致結(jié)論錯(cuò).故為:大前提.36.已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為15,求此拋物線方程.答案:由題意可設(shè)拋物線的方程y2=2px(p≠0),直線與拋物線交與A(x1,y1),B(x2,y2)聯(lián)立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0則x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2
]=5(12p-1)2-5=15解得p=6或p=-2∴拋物線的方程為y2=12x或y2=-4x37.投擲一個(gè)質(zhì)地均勻的、每個(gè)面上標(biāo)有一個(gè)數(shù)字的正方體玩具,它的六個(gè)面中,有兩個(gè)面標(biāo)的數(shù)字是0,兩個(gè)面標(biāo)的數(shù)字是2,兩個(gè)面標(biāo)的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)
(1)求點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率;
(2)若以落在區(qū)域C上的所有點(diǎn)為頂點(diǎn)作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機(jī)撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(2,0),(2,2),共4種D、故點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率為49.(2)區(qū)域M為一邊長(zhǎng)為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.38.“若x、y全為零,則xy=0”的否命題為______.答案:由于“全為零”的否定為“不全為零”,所以“若x、y全為零,則xy=0”的否命題為“若x、y不全為零,則xy≠0”.故為:若x、y不全為零,則xy≠0.39.(選做題)參數(shù)方程中當(dāng)t為參數(shù)時(shí),化為普通方程為(
)。答案:x2-y2=140.設(shè)隨機(jī)變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()
A.
B.
C.
D.答案:C41.(選做題)那霉素發(fā)酵液生物測(cè)定,一般都規(guī)定培養(yǎng)溫度為(37±1)°C,培養(yǎng)時(shí)間在16小時(shí)以上,某制藥廠為了縮短時(shí)間,決定優(yōu)選培養(yǎng)溫度,試驗(yàn)范圍固定在29~50°C,精確度要求±1°C,用分?jǐn)?shù)法安排實(shí)驗(yàn),令第一試點(diǎn)在t1處,第二試點(diǎn)在t2處,則t1+t2=(
).答案:7942.下列函數(shù)中,與函數(shù)y=x相等的是()A.y=(x)4B.y=5x5C.y=x2D.y=x2x答案:函數(shù)y=x的定義域?yàn)镽,選項(xiàng)中A,D定義域不是R,是A、D不正確.選項(xiàng)C的對(duì)應(yīng)法則不同,C不正確.故選B.43.已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)求弦AB的長(zhǎng)度.答案:(本小題滿分13分)(1)依題意可設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設(shè)A(x1,y1),B(x2,y2)…(7分)聯(lián)立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)44.已知f(x)是定義域?yàn)檎麛?shù)集的函數(shù),對(duì)于定義域內(nèi)任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對(duì)于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對(duì)于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對(duì)于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對(duì)于任意的k≥4,均有f(k)≥k2成立答案:對(duì)A,當(dāng)k=1或2時(shí),不一定有f(k)≥k2成立;對(duì)B,應(yīng)有f(k)≥k2成立;對(duì)C,只能得出:對(duì)于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對(duì)D,∵f(4)=25≥16,∴對(duì)于任意的k≥4,均有f(k)≥k2成立.故選D45.命題“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.對(duì)任意的x∈R,2x≤0
D.對(duì)任意的x∈R,2x>0答案:D46.四面體ABCD中,設(shè)M是CD的中點(diǎn),則化簡(jiǎn)的結(jié)果是()
A.
B.
C.
D.答案:A47.橢圓x216+y27=1上的點(diǎn)M到左準(zhǔn)線的距離為53,則點(diǎn)M到左焦點(diǎn)的距離為()A.8B.5C.274D.54答案:根據(jù)橢圓的第二定義可知M到左焦點(diǎn)F1的距離與其到左準(zhǔn)線的距離之比為離心率,依題意可知a=4,b=7∴c=3∴e=ca=34,∴根據(jù)橢圓的第二定義有:MF
1d=34∴M到左焦點(diǎn)的距離為MF1=53×34=54故選D.48.雙曲線C的焦點(diǎn)在x軸上,離心率e=2,且經(jīng)過點(diǎn)P(2,3),則雙曲線C的標(biāo)準(zhǔn)方程是______.答案:設(shè)雙曲線C的標(biāo)準(zhǔn)方程x2a2-y2b2=1,∵經(jīng)過點(diǎn)P(2,3),∴2a2-3b2=1
①,又∵e=2=a2+b2a
②,由①②聯(lián)立方程組并解得
a2=1,b2=3,雙曲線C的標(biāo)準(zhǔn)方程是x2-y23=1,故為:x2-y23=1.49.已知函數(shù)y=f(x)是偶函數(shù),其圖象與x軸有四個(gè)交點(diǎn),則f(x)=0的所有實(shí)數(shù)根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對(duì)稱∴其圖象與x軸有四個(gè)交點(diǎn)也關(guān)于y軸對(duì)稱∴方程f(x)=0的所有實(shí)根之和為0故為:050.已知函數(shù)f
(x)=logx,則方程()|x|=|f(x)|的實(shí)根個(gè)數(shù)是()
A.1
B.2
C.3
D.2006答案:B第2卷一.綜合題(共50題)1.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C2.命題“所有能被2整除的數(shù)都是偶數(shù)”的否定
是()
A.所有不能被2整除的整數(shù)都是偶數(shù)
B.所有能被2整除的整數(shù)都不是偶數(shù)
C.存在一個(gè)不能被2整除的整數(shù)是偶數(shù)
D.存在一個(gè)能被2整除的整數(shù)不是偶數(shù)答案:D3.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點(diǎn),已知燈口直徑是60
cm,燈深40
cm,則光源到反射鏡頂點(diǎn)的距離是
______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(diǎn)(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點(diǎn)的距離為458cm.4.四支足球隊(duì)爭(zhēng)奪冠、亞軍,不同的結(jié)果有()
A.8種
B.10種
C.12種
D.16種答案:C5.在平面直角坐標(biāo)系xOy中,設(shè)P(x,y)是橢圓上的一個(gè)動(dòng)點(diǎn),則S=x+y的最大值是()
A.1
B.2
C.3
D.4答案:B6.某同學(xué)參加科普知識(shí)競(jìng)賽,需回答三個(gè)問題,競(jìng)賽規(guī)則規(guī)定:答對(duì)第一、二、三個(gè)問題分別得100分、100分、200分,答錯(cuò)得0分,假設(shè)這位同學(xué)答對(duì)第一、二、三個(gè)問題的概率分別為0.8、0.7、0.6,且各題答對(duì)與否相互之間沒有影響,則這名同學(xué)得300分的概率為
;這名同學(xué)至少得300分的概率為
.答案:0.228;0.564解析:得300分可能是答對(duì)第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對(duì)4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。7.到兩互相垂直的異面直線的距離相等的點(diǎn),在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()
A.直線
B.橢圓
C.拋物線
D.雙曲線答案:D8.拋物線y=x2的焦點(diǎn)坐標(biāo)是()
A.(,0)
B.(0,)
C.(0,1)
D.(1,0)答案:C9.對(duì)于函數(shù)f(x),若存在區(qū)間M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個(gè)“穩(wěn)定區(qū)間”現(xiàn)有四個(gè)函數(shù):
①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“穩(wěn)定區(qū)間”的函數(shù)有()A.①②B.②③C.③④D.②④答案:①對(duì)于函數(shù)f(x)=ex若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有ea=a,eb=b,即方程ex=x有兩個(gè)解,即y=ex和y=x的圖象有兩個(gè)交點(diǎn),這與即y=ex和y=x的圖象沒有公共點(diǎn)相矛盾,故①不存在“穩(wěn)定區(qū)間”.②對(duì)于f(x)=x3存在“穩(wěn)定區(qū)間”,如x∈[0,1]時(shí),f(x)=x3∈[0,1].③對(duì)于f(x)=sinπ2x,存在“穩(wěn)定區(qū)間”,如x∈[0,1]時(shí),f(x)=sinπ2x∈[0,1].④對(duì)于f(x)=lnx,若存在“穩(wěn)定區(qū)間”[a,b],由于函數(shù)是定義域內(nèi)的增函數(shù),故有l(wèi)na=a,且lnb=b,即方程lnx=x有兩個(gè)解,即y=lnx
和y=x的圖象有兩個(gè)交點(diǎn),這與y=lnx和y=x的圖象沒有公共點(diǎn)相矛盾,故④不存在“穩(wěn)定區(qū)間”.故選B.10.______稱為向量的長(zhǎng)度(或稱為模),記作
______,______稱為零向量,記作
______,______稱為單位向量.答案:向量AB所在線段AB的長(zhǎng)度,即向量AB的大小,稱為向量AB的長(zhǎng)度(或成為模),記作|AB|;長(zhǎng)度為零的向量稱為零向量,記作0;長(zhǎng)度等于1個(gè)單位的向量稱為單位向量.故為:向量AB所在線段AB的長(zhǎng)度,即向量AB的大小,|AB|;長(zhǎng)度為零的向量,0;長(zhǎng)度等于1個(gè)單位的向量.11.設(shè)橢圓=1(a>b>0)的離心率為,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)()
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2上
C.必在圓x2+y2=2外
D.以上三種情形都有可能答案:A12.求圓心在直線y=-4x上,并且與直線l:x+y-1=0相切于點(diǎn)P(3,-2)的圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2(r>0)由題意有:b=-4a|a+b+1|2=rb+2a-3?(-1)=-1解之得a=1b=-4r=22∴所求圓的方程為(x-1)2+(y+4)2=813.某制藥廠為了縮短培養(yǎng)時(shí)間,決定優(yōu)選培養(yǎng)溫度,試驗(yàn)范圍定為29℃至50℃,現(xiàn)用分?jǐn)?shù)法確定最佳溫度,設(shè)第1,2,3次試驗(yàn)的溫度分別為x1,x2,x3,若第2個(gè)試點(diǎn)比第1個(gè)試點(diǎn)好,則x3的值為(
)。答案:34℃或45℃14.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.15.對(duì)變量x、y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖2.由這兩個(gè)散點(diǎn)圖可以判斷()
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)
D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)答案:C16.設(shè)直線的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.17.球的表面積與它的內(nèi)接正方體的表面積之比是()A.π3B.π4C.π2D.π答案:設(shè):正方體邊長(zhǎng)設(shè)為:a則:球的半徑為3a2所以球的表面積S1=4?π?R2=4π34a2=3πa2而正方體表面積為:S2=6a2所以比值為:S1S2=π2故選C18.設(shè)=(3,4),=(sinα,cosα),且⊥,則tanα的值為()
A.
B.-
C.
D.-答案:D19.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.20.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時(shí),由n=k(k>1)不等式成立,推證n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C21.三段論:“①船準(zhǔn)時(shí)啟航就能準(zhǔn)時(shí)到達(dá)目的港,②這艘船準(zhǔn)時(shí)到達(dá)了目的港,③這艘船是準(zhǔn)時(shí)啟航的”中,“小前提”是______.(填序號(hào))答案:三段論:“①船準(zhǔn)時(shí)啟航就能準(zhǔn)時(shí)到達(dá)目的港;②這艘船準(zhǔn)時(shí)到達(dá)了目的港,③這艘船是準(zhǔn)時(shí)啟航的,我們易得大前提是①,小前提是②,結(jié)論是③,故為:②.22.已知點(diǎn)A分BC所成的比為-13,則點(diǎn)B分AC所成的比為______.答案:由已知得B是AC的內(nèi)分點(diǎn),且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.23.已知函數(shù)y=與y=ax2+bx,則下列圖象正確的是(
)
A.
B.
C.
D.
答案:C24.為了了解學(xué)校學(xué)生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況,根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示,根據(jù)此圖,估計(jì)該校2000名高中男生中體重大于70.5公斤的人數(shù)為()
A.300B.350C.420D.450答案:∵由圖得,∴70.5公斤以上的人數(shù)的頻率為:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人數(shù)為2000×0.181=362,故選B25.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個(gè)問題:一對(duì)兔子飼養(yǎng)到第二個(gè)月進(jìn)入成年,第三個(gè)月生一對(duì)小兔,以后每個(gè)月生一對(duì)小兔,所生小兔能全部存活并且也是第二個(gè)月成年,第三個(gè)月生一對(duì)小兔,以后每月生一對(duì)小兔.問這樣下去到年底應(yīng)有多少對(duì)兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個(gè)月有對(duì)小兔,第二個(gè)月有對(duì)成年兔子,第三個(gè)月有兩對(duì)兔子,從第三個(gè)月開始,每個(gè)月的兔子對(duì)數(shù)是前面兩個(gè)月兔子對(duì)數(shù)的和,設(shè)第個(gè)月有對(duì)兔子,第個(gè)月有對(duì)兔子,第個(gè)月有對(duì)兔子,則有,一個(gè)月后,即第個(gè)月時(shí),式中變量的新值應(yīng)變第個(gè)月兔子的對(duì)數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€(gè)月兔子的對(duì)數(shù)(的舊值),這樣,用求出變量的新值就是個(gè)月兔子的數(shù),依此類推,可以得到一個(gè)數(shù)序列,數(shù)序列的第項(xiàng)就是年底應(yīng)有兔子對(duì)數(shù),我們可以先確定前兩個(gè)月的兔子對(duì)數(shù)均為,以此為基準(zhǔn),構(gòu)造一個(gè)循環(huán)程序,讓表示“第×個(gè)月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND26.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為
______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.27.根據(jù)給出的程序語言,畫出程序框圖,并計(jì)算程序運(yùn)行后的結(jié)果.
答案:程序框圖:模擬程序運(yùn)行:當(dāng)j=1時(shí),n=1,當(dāng)j=2時(shí),n=1,當(dāng)j=3時(shí),n=1,當(dāng)j=4時(shí),n=2,…當(dāng)j=8時(shí),n=2,…當(dāng)j=11時(shí),n=2,當(dāng)j=12時(shí),此時(shí)不滿足循環(huán)條件,退出循環(huán)程序運(yùn)行后的結(jié)果是:2.28.選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)O與原點(diǎn)重合,極軸與x軸的正半軸重合.點(diǎn)A,B的極坐標(biāo)分別為(2,π),(22,π4),曲線C的參數(shù)方程為答案:(Ⅰ)S△AOB=12×2×229.過點(diǎn)A(a,4)和B(-1,a)的直線的傾斜角等于45°,則a的值是______.答案:∵過點(diǎn)A(a,4)和B(-1,a)的直線的傾斜角等于45°,∴kAB=a-4-1-a=tan45°=1,∴a=32.故為:32.30.直線過原點(diǎn)且傾角的正弦值是45,則直線方程為______.答案:因?yàn)閮A斜角α的范圍是:0≤α<π,又由題意:sinα=45所以:tanα=±43x直線過原點(diǎn),由直線的點(diǎn)斜式方程得到:y=±43x故為:y=±43x31.下面程序運(yùn)行后,輸出的值是()
A.42
B.43
C.44
D.45
答案:C32.直線y=33x繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標(biāo)為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是1.故為:133.P為橢圓x225+y216=1上一點(diǎn),F(xiàn)1,F(xiàn)2分別為其左,右焦點(diǎn),則△PF1F2周長(zhǎng)為______.答案:由題意知△PF1F2周長(zhǎng)=2a+2c=10+6=16.34.設(shè)橢圓(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為,則此橢圓的方程為(
)
A.
B.
C.
D.答案:B35.已知命題p:“有的實(shí)數(shù)沒有平方根.”,則非p是______.答案:∵命題p:“有的實(shí)數(shù)沒有平方根.”,是一個(gè)特稱命題,非P是它的否定,應(yīng)為全稱命題“所有實(shí)數(shù)都有平方根”故為:所有實(shí)數(shù)都有平方根.36.如圖:一個(gè)力F作用于小車G,使小車G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車的位移方向的夾角為60°,則F在小車位移方向上的正射影的數(shù)量為______,力F做的功為______牛米.答案:如圖,∵|F|=50,且F與小車的位移方向的夾角為60°,∴F在小車位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車G,使小車G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.37.函數(shù)y=ax的反函數(shù)的圖象過點(diǎn)(9,2),則a的值為______.答案:依題意,點(diǎn)(9,2)在函數(shù)y=ax的反函數(shù)的圖象上,則點(diǎn)(2,9)在函數(shù)y=ax的圖象上將x=2,y=9,代入y=ax中,得9=a2解得a=3故為:3.38.如圖,在△ABC中,,,則實(shí)數(shù)λ的值為()
A.
B.
C.
D.
答案:D39.不等式的解集是
.答案:[0,2]解析:本小題主要考查根式不等式的解法,去掉根號(hào)是解根式不等式的基本思路,也考查了轉(zhuǎn)化與化歸的思想.原不等式等價(jià)于解得0≤x≤2.40.在平面直角坐標(biāo)系xOy中,雙曲線x24-y212=1上一點(diǎn)M,點(diǎn)M的橫坐標(biāo)是3,則M到雙曲線右焦點(diǎn)的距離是______答案:MFd=e=2,d為點(diǎn)M到右準(zhǔn)線x=1的距離,則d=2,∴MF=4.故為441.對(duì)于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2012次操作后得到的數(shù)是
()A.25B.250C.55D.133答案:第1次操作為23+53=133,第2次操作為13+33+33=55,第3次操作為53+53=250,第4次操作為23+53+03=133∴操作結(jié)果,以3為周期,循環(huán)出現(xiàn)∵2012=3×670+2∴第2012次操作后得到的數(shù)與第2次操作后得到的數(shù)相同∴第2012次操作后得到的數(shù)是55故選C.42.下列給出的輸入語句、輸出語句和賦值語句
(1)輸出語句INPUT
a;b;c
(2)輸入語句INPUT
x=3
(3)賦值語句3=B
(4)賦值語句A=B=2
則其中正確的個(gè)數(shù)是()
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)答案:A43.為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均值都是s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均值都是t,那么下列說法正確的是()
A.l1和l2必定平行
B.l1與l2必定重合
C.l1和l2有交點(diǎn)(s,t)
D.l1與l2相交,但交點(diǎn)不一定是(s,t)答案:C44.若則實(shí)數(shù)λ的值是()
A.
B.
C.
D.答案:D45.設(shè)a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設(shè)a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.46.用反證法證明“a+b=1”時(shí)的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C47.已知復(fù)數(shù)a+bi,其中a,b為0,1,2,…,9這10個(gè)數(shù)字中的兩個(gè)不同的數(shù),則不同的虛數(shù)的個(gè)數(shù)為()A.36B.72C.81D.90答案:當(dāng)a取0時(shí),b有9種取法,當(dāng)a不取0時(shí),a有9種取法,b不能取0和a取的數(shù),故b有8種取法,∴組成不同的虛數(shù)個(gè)數(shù)為9+9×8=81種,故選C.48.直線上與點(diǎn)的距離等于的點(diǎn)的坐標(biāo)是_______。答案:,或49.用行列式討論關(guān)于x,y
的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)50.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()
A.1
B.2
C.-2
D.-1答案:D第3卷一.綜合題(共50題)1.某簡(jiǎn)單幾何體的三視圖如圖所示,其正視圖.側(cè)視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個(gè)幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個(gè)三棱錐,設(shè)出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2
①xz=4
②yz=8
③由①②得z=2y
④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.2.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______
時(shí),方程的解集是有限集;滿足條件______
時(shí),方程的解集是無限集;滿足條件______
時(shí),方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個(gè)解時(shí),為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時(shí),方程有無數(shù)組解,方程的解集是無限集;滿足條件
a=0,b≠0
時(shí),方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;
a=0,b≠0.3.復(fù)數(shù),且A+B=0,則m的值是()
A.
B.
C.-
D.2答案:C4.已知A(-1,2),B(2,-2),則直線AB的斜率是()
A.
B.
C.
D.答案:A5.現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖,同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為a24.類比到空間,有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為______.答案:∵同一個(gè)平面內(nèi)有兩個(gè)邊長(zhǎng)都是a的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為a24,類比到空間有兩個(gè)棱長(zhǎng)均為a的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為a38,故為a38.6.設(shè),是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實(shí)數(shù)m為()
A.-2
B.2
C.-
D.不存在答案:A7.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)等號(hào)成立.答案:證明不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個(gè)式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號(hào)當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)成立.8.若3π2<α<2π,則直線xcosα+ysinα=1必不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點(diǎn),因而直線不過第二象限.故選B9.已知圓C:x2+y2=12,直線l:4x+3y=25.
(1)圓C的圓心到直線l的距離為______;
(2)圓C上任意一點(diǎn)A到直線l的距離小于2的概率為______.答案:(1)由題意知圓x2+y2=12的圓心是(0,0),圓心到直線的距離是d=2532+42=5,(2)由題意知本題是一個(gè)幾何概型,試驗(yàn)發(fā)生包含的事件是從這個(gè)圓上隨機(jī)的取一個(gè)點(diǎn),對(duì)應(yīng)的圓上整個(gè)圓周的弧長(zhǎng),滿足條件的事件是到直線l的距離小于2,過圓心做一條直線交直線l與一點(diǎn),根據(jù)上一問可知圓心到直線的距離是5,在這條垂直于直線l的半徑上找到圓心的距離為3的點(diǎn)做半徑的垂線,根據(jù)弦心距,半徑,弦長(zhǎng)之間組成的直角三角形得到符合條件的弧長(zhǎng)對(duì)應(yīng)的圓心角是60°根據(jù)幾何概型的概率公式得到P=60°360°=16故為:5;1610.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為
______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.11.將函數(shù)="2x"+1的圖像按向量平移得函數(shù)=的圖像則
A=(1)B=(1,1)C=()
D(1,1)答案:C解析:分析:本小題主要考查函數(shù)圖象的平移與向量的關(guān)系問題.依題由函數(shù)y=2x+1的圖象得到函數(shù)y=2x+1的圖象,需將函數(shù)y=2x+1的圖象向左平移1個(gè)單位,向下平移1個(gè)單位;故=(-1,-1).解:設(shè)=(h,k)則函數(shù)y=2x+1的圖象平移向量后所得圖象的解析式為y=2x-h+1+k∴∴∴=(-1,-1)故答案為:C.12.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:2113.函數(shù)y=f(x)的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個(gè)不同的數(shù)x1,x2,…xn,使得f(x1)x1=f(x2)x2=…=f(xn)xn,則n的取值范圍為()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}答案:令y=f(x),y=kx,作直線y=kx,可以得出2,3,4個(gè)交點(diǎn),故k=f(x)x(x>0)可分別有2,3,4個(gè)解.故n的取值范圍為2,3,4.故選B.14.已知點(diǎn)P1(3,-5),P2(-1,-2),在直線P1P2上有一點(diǎn)P,且|P1P|=15,則P點(diǎn)坐標(biāo)為()
A.(-9,-4)
B.(-14,15)
C.(-9,4)或(15,-14)
D.(-9,4)或(-14,15)答案:C15.使關(guān)于的不等式有解的實(shí)數(shù)的最大值是(
)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。16.四面體ABCD中,設(shè)M是CD的中點(diǎn),則化簡(jiǎn)的結(jié)果是()
A.
B.
C.
D.答案:A17.有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根據(jù)樣本的頻率分布估計(jì),大于或等于31.5的數(shù)據(jù)約占()A.211B.13C.12D.23答案:根據(jù)所給的數(shù)據(jù)的分組和各組的頻數(shù)知道,大于或等于31.5的數(shù)據(jù)有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數(shù)據(jù)共有66個(gè),∴大于或等于31.5的數(shù)據(jù)約占2266=13,故選B18.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C19.某商場(chǎng)舉行購(gòu)物抽獎(jiǎng)促銷活動(dòng),規(guī)定每位顧客從裝有編號(hào)為0,1,2,3四個(gè)相同小球的抽獎(jiǎng)箱中,每次取出一球記下編號(hào)后放回,連續(xù)取兩次,若取出的兩個(gè)小球號(hào)碼相加之和等于6則中一等獎(jiǎng),等于5中二等獎(jiǎng),等于4或3中三等獎(jiǎng).
(1)求中三等獎(jiǎng)的概率;
(2)求中獎(jiǎng)的概率.答案:(1)設(shè)“中三等獎(jiǎng)”為事件A,“中獎(jiǎng)”為事件B,從四個(gè)小球中有放回的取兩個(gè)共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個(gè)小球號(hào)碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個(gè)小球號(hào)相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎(jiǎng)的概率為716;(2)兩個(gè)小球號(hào)碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個(gè)小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個(gè)小球號(hào)碼相加之和等于5的取法有2種:(2,3),(3,2)兩個(gè)小球號(hào)碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中獎(jiǎng)的概率為:58.20.若圓x2+y2=9上每個(gè)點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的,則所得到的曲線的方程是()
A.
B.
C.
D.答案:C21.給出20個(gè)數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個(gè)求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.22.如圖所示,圓的內(nèi)接三角形ABC的角平分線BD與AC交于點(diǎn)D,與圓交于點(diǎn)E,連接AE,已知ED=3,BD=6,則線段AE的長(zhǎng)=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故為:3323.有四條線段,其長(zhǎng)度分別為2,3,4,5,現(xiàn)從中任取三條,則以這三條線段為邊可以構(gòu)成三角形的概率是______.答案:所有的取法共有C34=4種,三條線段構(gòu)成三角形的條件是任意兩邊之和大于第三邊,其中能夠成三角形的取法有①2、3、4;②2、4、5;③3、4、5,共有3種,故這三條線段為邊可以構(gòu)成三角形的概率是34,故為34.24.如圖所示的方格紙中有定點(diǎn)O,P,Q,E,F(xiàn),G,H,則=()
A.
B.
C.
D.
答案:C25.已知F1=i+2j+3k,F(xiàn)2=2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于一物體上,使物體從點(diǎn)M(1,-2,1)移動(dòng)到N(3,1,2),則合力所作的功是______.答案:由題意可得F1=(1,2,3)F2=(2,3,-1),F(xiàn)3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F?S=6×2+1×3+7×1=22故為:2226.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長(zhǎng)為______.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設(shè)圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長(zhǎng)為222-(2)2=22,故為22.27.a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:當(dāng)a=0時(shí),復(fù)數(shù)a+bi=bi,當(dāng)b=0是不是純虛數(shù)即“a=0”成立推不出“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”反之,當(dāng)復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù),則有a=0且b≠0即“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”成立能推出“a=0“成立故a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的必要不充分條件故選B28.某公司為慶祝元旦舉辦了一個(gè)抽獎(jiǎng)活動(dòng),現(xiàn)場(chǎng)準(zhǔn)備的抽獎(jiǎng)箱里放置了分別標(biāo)有數(shù)字1000、800﹑600、0的四個(gè)球(球的大小相同).參與者隨機(jī)從抽獎(jiǎng)箱里摸取一球(取后即放回),公司即贈(zèng)送與此球上所標(biāo)數(shù)字等額的獎(jiǎng)金(元),并規(guī)定摸到標(biāo)有數(shù)字0的球時(shí)可以再摸一次﹐但是所得獎(jiǎng)金減半(若再摸到標(biāo)有數(shù)字0的球就沒有第三次摸球機(jī)會(huì)),求一個(gè)參與抽獎(jiǎng)活動(dòng)的人可得獎(jiǎng)金的期望值是多少元.答案:設(shè)ξ表示摸球后所得的獎(jiǎng)金數(shù),由于參與者摸取的球上標(biāo)有數(shù)字1000,800,600,0,當(dāng)摸到球上標(biāo)有數(shù)字0時(shí),可以再摸一次,但獎(jiǎng)金數(shù)減半,即分別為500,400,300,0.則ξ的所有可能取值為1000,800,600,500,400,300,0.依題意得P(ξ=1000)=P(ξ=800)=P(ξ=600)=14,P(ξ=500)=P(ξ=400)=P(ξ=300)=P(ξ=0)=116,則ξ的分布列為∴所求期望值為Eξ=14(1000+800+600)+116(500+400+300+0)=675元.29.曲線與坐標(biāo)軸的交點(diǎn)是(
)A.B.C.D.答案:B解析:當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為;當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為30.如圖是一個(gè)幾何體的三視圖(單位:cm),則這個(gè)幾何體的表面積是()A.(7+2)
cm2B.(4+22)cm2C.(6+2)cm2D.(6+22)cm2答案:圖中的幾何體可看成是一個(gè)底面為直角梯形的直棱柱.直角梯形的上底為1,下底為2,高為1;棱柱的高為1.可求得直角梯形的四條邊的長(zhǎng)度為1,1,2,2.所以此幾何體的表面積S表面=2S底+S側(cè)面=12(1+2)×1×2+(1+1+2+2)×1=7+2(cm2).故選A.31.設(shè)雙曲線的兩條漸近線為y=±x,則該雙曲線的離心率e為()
A.5
B.或
C.或
D.答案:C32.“a=2”是“直線ax+2y=0平行于直線x+y=1”的(
)
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件答案:C33.過點(diǎn)P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 如何拍攝培訓(xùn)課件
- 贛南衛(wèi)生健康職業(yè)學(xué)院《遙感原理及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 相互喂飯培訓(xùn)課件
- 贛東學(xué)院《經(jīng)濟(jì)社會(huì)系統(tǒng)仿真實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級(jí)道德與法治上冊(cè)第二單元友誼的天空第四課友誼與成長(zhǎng)同行第1課時(shí)誤區(qū)警示新人教版
- 小學(xué)生頒獎(jiǎng)?wù)n件背景
- 小學(xué)生傳統(tǒng)文化禮儀課件
- 《動(dòng)能和勢(shì)能教學(xué)》課件
- 礦石運(yùn)輸與堆放技術(shù)
- 五年級(jí)數(shù)學(xué)(小數(shù)除法)計(jì)算題專項(xiàng)練習(xí)及答案匯編
- 2024年酒店式公寓承包合同
- 貓抓病的護(hù)理
- 勘察設(shè)計(jì)工作內(nèi)容
- GB/T 19799.2-2024無損檢測(cè)超聲檢測(cè)試塊第2部分:2號(hào)標(biāo)準(zhǔn)試塊
- 2024-2025學(xué)年冀教新版八年級(jí)上冊(cè)數(shù)學(xué)期末復(fù)習(xí)試卷(含詳解)
- DB45T 1831-2018 汽車加油加氣站防雷裝置檢測(cè)技術(shù)規(guī)范
- 《兒歌運(yùn)用于幼兒園教育問題研究的文獻(xiàn)綜述》8600字
- 懸掛燈籠施工方案
- 水資源調(diào)配與優(yōu)化-洞察分析
- 某自來水公司自然災(zāi)害應(yīng)急預(yù)案樣本(2篇)
- 無人機(jī)職業(yè)生涯規(guī)劃
評(píng)論
0/150
提交評(píng)論