版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年武威職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.復(fù)數(shù)(12+32i)3i的值為_(kāi)_____.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+
isinπ2=cosπ2+isinπ2=i,故為:i.2.觀察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5個(gè)等式應(yīng)為_(kāi)_____.答案:由題意,(i)等式左邊為一段連續(xù)自然數(shù)之和,且最后一個(gè)和數(shù)恰為各等式序號(hào)的立方,最前一個(gè)和數(shù)恰為等式序號(hào)減1平方加1;(ii)等式右邊均為兩數(shù)立方和,且也與等式序號(hào)具有明顯的相關(guān)性.故猜想第5個(gè)等式應(yīng)為17+18+19+20+21+22+23+24+25=64+125故為:17+18+19+20+21+22+23+24+25=64+1253.要從10名女生與5名男生中選出6名學(xué)生組成課外活動(dòng)小組,則符合按性別比例分層抽樣的概率為()
A.
B.
C.
D.
答案:C4.求證:定義在實(shí)數(shù)集上的單調(diào)減函數(shù)y=f(x)的圖象與x軸至多只有一個(gè)公共點(diǎn).答案:證明:假設(shè)函數(shù)y=f(x)的圖象與x軸有兩個(gè)交點(diǎn)…(2分)設(shè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<x2.因?yàn)楹瘮?shù)y=f(x)在實(shí)數(shù)集上單調(diào)遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設(shè)不成立.
…(12分)故原命題成立.…(14分)5.質(zhì)地均勻的正四面體玩具的4個(gè)面上分別刻著數(shù)字1,2,3,4,將4個(gè)這樣的玩具同時(shí)拋擲于桌面上.
(1)求與桌面接觸的4個(gè)面上的4個(gè)數(shù)的乘積不能被4整除的概率;
(2)設(shè)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個(gè)數(shù)均為奇數(shù),概率為P1=(12)4=116②4個(gè)數(shù)中有3個(gè)奇數(shù),另一個(gè)為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),由題意知ξ的可能取值是0,1,2,3,4,根據(jù)符合二項(xiàng)分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項(xiàng)分布B(4,12),∴Eξ=4×12=2.6.若A(x,5-x,2x-1),B(1,x+2,2-x),當(dāng)||取最小值時(shí),x的值等于(
)
A.
B.
C.
D.答案:C7.點(diǎn)P1,P2是線(xiàn)段AB的2個(gè)三等分點(diǎn),若P∈{P1,P2},則P分有線(xiàn)段AB的比λ的最大值和最小值分別為()
A.3,
B.3,
C.2,
D.2,1答案:C8.OA、OB(O為原點(diǎn))是圓x2+y2=2的兩條互相垂直的半徑,C是該圓上任一點(diǎn),且OC=λOA+μO(píng)B,則λ2+μ2=______.答案:∵OC=λOA+μO(píng)B,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μO(píng)B)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故為:19.(Ⅰ)解關(guān)于x的不等式(lgx)2-lgx-2>0;
(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0對(duì)于|m|≤1恒成立,求x的取值范圍.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴l(xiāng)gx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)設(shè)y=lgx,則原不等式可化為y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.當(dāng)y=1時(shí),不等式不成立.設(shè)f(m)=(1-y)m+(y2-2y-1),則f(x)是m的一次函數(shù),且一次函數(shù)為單調(diào)函數(shù).當(dāng)-1≤m≤1時(shí),若要f(m)>0?f(1)>0f(-1)>0.?y2-2y-1+1-y>0y2-2y-1+y-1>0.?y2-3y>0y2-y-2>0.?y<0或y>3y<-1或y>2.則y<-1或y>3.∴l(xiāng)gx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范圍是(0,110)∪(103,+∞).10.設(shè)函數(shù)f(x)的定義域?yàn)镽,如果對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:3211.已知空間三點(diǎn)A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是
______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°12.如圖,AB是半圓O的直徑,C、D是半圓上的兩點(diǎn),半圓O的切線(xiàn)PC交AB的延長(zhǎng)線(xiàn)于點(diǎn)P,∠PCB=25°,則∠ADC為()
A.105°
B.115°
C.120°
D.125°
答案:B13.已知x∈{1,2,x2},則實(shí)數(shù)x=______.答案:∵x∈{1,2,x2},分情況討論可得:①x=1此時(shí)集合為{1,2,1}不合題意②x=2此時(shí)集合為{1,2,4}合題意③x=x2解得x=0或x=1當(dāng)x=0時(shí)集合為{1,2,0}合題意故為0或2.14.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說(shuō):“是乙或丙獲獎(jiǎng).”乙說(shuō):“甲、丙都未獲獎(jiǎng).”丙說(shuō):“我獲獎(jiǎng)了.”丁說(shuō):“是乙獲獎(jiǎng).”四位歌手的話(huà)只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是()A.甲B.乙C.丙D.丁答案:若甲是獲獎(jiǎng)的歌手,則都說(shuō)假話(huà),不合題意.若乙是獲獎(jiǎng)的歌手,則甲、乙、丁都說(shuō)真話(huà),丙說(shuō)假話(huà),不符合題意.若丁是獲獎(jiǎng)的歌手,則甲、丁、丙都說(shuō)假話(huà),乙說(shuō)真話(huà),不符合題意.故獲獎(jiǎng)的歌手是丙故先C15.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點(diǎn)到直線(xiàn)x=2+45ty=c-35t(t為參數(shù))的距離的最大值為_(kāi)_____.答案:∵直線(xiàn)x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設(shè)直線(xiàn)3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線(xiàn)3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點(diǎn)到直線(xiàn)的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.16.已知平行直線(xiàn)l1:x-y+1=0與l2:x-y+3=0,求l1與l2間的距離.答案:∵已知平行直線(xiàn)l1:x-y+1=0與l2:x-y+3=0,則l1與l2間的距離d=|3-1|2=2.17.正態(tài)曲線(xiàn)下、橫軸上,從均值到+∞的面積為_(kāi)_____答案:由正態(tài)曲線(xiàn)的對(duì)稱(chēng)性特點(diǎn)知,曲線(xiàn)與x軸之間的面積為1,所以從均數(shù)到的面積為整個(gè)面積的一半,即50%.填:0.5.18.給出以下四個(gè)對(duì)象,其中能構(gòu)成集合的有()
①教2011屆高一的年輕教師;
②你所在班中身高超過(guò)1.70米的同學(xué);
③2010年廣州亞運(yùn)會(huì)的比賽項(xiàng)目;
④1,3,5.A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:解析:因?yàn)槲匆?guī)定年輕的標(biāo)準(zhǔn),所以①不能構(gòu)成集合;由于②③④中的對(duì)象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.19.利用獨(dú)立性檢驗(yàn)對(duì)兩個(gè)分類(lèi)變量是否有關(guān)系進(jìn)行研究時(shí),若有99.5%的把握說(shuō)事件A和B有關(guān)系,則具體計(jì)算出的數(shù)據(jù)應(yīng)該是()
A.K2≥6.635
B.K2<6.635
C.K2≥7.879
D.K2<7.879答案:C20.已知一個(gè)幾何體是由上下兩部分構(gòu)成的一個(gè)組合體,其三視圖如圖所示,則這個(gè)組合體的上下兩部分分別是(
)答案:A21.已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為_(kāi)_____.答案:∵a+2b+3c=6,∴根據(jù)柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化簡(jiǎn)得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,當(dāng)且僅當(dāng)a:2b:3c=1:1:1時(shí),即a=2,b=1,c=23時(shí)等號(hào)成立由此可得:當(dāng)且僅當(dāng)a=2,b=1,c=23時(shí),a2+4b2+9c2的最小值為12故為:1222.若21-i=a+bi(i為虛數(shù)單位,a,b∈R),則a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故為:223.不等式3≤|5-2x|<9的解集為()
A.[-2,1)∪[4,7)
B.(-2,1]∪(4,7]
C.(-2,-1]∪[4,7)
D.(-2,1]∪[4,7)答案:D24.在平面直角坐標(biāo)系xOy中,設(shè)F1(-4,0),F(xiàn)2(4,0),方程x225+y29=1的曲線(xiàn)為C,關(guān)于曲線(xiàn)C有下列命題:
①曲線(xiàn)C是以F1、F2為焦點(diǎn)的橢圓的一部分;
②曲線(xiàn)C關(guān)于x軸、y軸、坐標(biāo)原點(diǎn)O對(duì)稱(chēng);
③若P是上任意一點(diǎn),則PF1+PF2≤10;
④若P是上任意一點(diǎn),則PF1+PF2≥10;
⑤曲線(xiàn)C圍成圖形的面積為30.
其中真命題的序號(hào)是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線(xiàn)段,如圖故①④錯(cuò),②③對(duì)對(duì)于⑤,圖形的面積為3×52×4=30,故⑤對(duì).故為②③⑤25.若F1、F2是橢圓x24+y2=1的左、右兩個(gè)焦點(diǎn),M是橢圓上的動(dòng)點(diǎn),則1|MF1|+1|MF2|的最小值為_(kāi)_____.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個(gè)焦點(diǎn),M是橢圓上的動(dòng)點(diǎn),∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.26.曲線(xiàn)(θ為參數(shù))上的點(diǎn)到兩坐標(biāo)軸的距離之和的最大值是()
A.
B.
C.1
D.答案:D27.某計(jì)算機(jī)程序每運(yùn)行一次都隨機(jī)出現(xiàn)一個(gè)五位的二進(jìn)制數(shù)A=
,其中A的各位數(shù)中,a1=1,ak(k=2,3,4,5)出現(xiàn)0的概率為,出現(xiàn)1的概率為.記ξ=a1+a2+a3+a4+a5,當(dāng)程序運(yùn)行一次時(shí),ξ的數(shù)學(xué)期望Eξ=()
A.
B.
C.
D.答案:C28.下列隨機(jī)變量ξ服從二項(xiàng)分布的是()
①隨機(jī)變量ξ表示重復(fù)拋擲一枚骰子n次中出現(xiàn)點(diǎn)數(shù)是3的倍數(shù)的次數(shù);
②某射手擊中目標(biāo)的概率為0.9,從開(kāi)始射擊到擊中目標(biāo)所需的射擊次數(shù)ξ;
③有一批產(chǎn)品共有N件,其中M件為次品,采用有放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)(M<N);
④有一批產(chǎn)品共有N件,其中M件為次品,采用不放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)(M<N).
A.②③
B.①④
C.③④
D.①③答案:D29.=(2,1),=(3,4),則向量在向量方向上的投影為()
A.
B.
C.2
D.10答案:C30.點(diǎn)P(,)與圓x2+y2=1的位置關(guān)系是()
A.在圓內(nèi)
B.在圓外
C.在圓上
D.與t有關(guān)答案:C31.已知P為拋物線(xiàn)y2=4x上一點(diǎn),設(shè)P到準(zhǔn)線(xiàn)的距離為d1,P到點(diǎn)A(1,4)的距離為d2,則d1+d2的最小值為_(kāi)_____.答案:∵y2=4x,焦點(diǎn)坐標(biāo)為F(1,0)根據(jù)拋物線(xiàn)定義可知P到準(zhǔn)線(xiàn)的距離為d1=|PF|d1+d2=|PF|+|PA|進(jìn)而可知當(dāng)A,P,F(xiàn)三點(diǎn)共線(xiàn)時(shí),d1+d2的最小值=|AF|=4故為432.已知直線(xiàn)ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長(zhǎng)分別為|a|,|b|,|c|所構(gòu)成的三角形的形狀是______.答案:直線(xiàn)ax+by+c=0(abc≠0)與圓x2+y2=1相離,即|c|a2+b2>
1即|c|2>a2+b2三角形是鈍角三角形.故為:鈍角三角形.33.化簡(jiǎn):AB+CD+BC=______.答案:如圖:AB+CD+BC=AB+BC+CD=AC+CD=AD.故為:AD.34.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C35.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實(shí)數(shù)解,求a的值.答案:設(shè)方程的實(shí)根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-336.下列給出的輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句
(1)輸出語(yǔ)句INPUT
a;b;c
(2)輸入語(yǔ)句INPUT
x=3
(3)賦值語(yǔ)句3=B
(4)賦值語(yǔ)句A=B=2
則其中正確的個(gè)數(shù)是()
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)答案:A37.點(diǎn)O是四邊形ABCD內(nèi)一點(diǎn),滿(mǎn)足OA+OB+OC=0,若AB+AD+DC=λAO,則λ=______.答案:設(shè)BC中點(diǎn)為E,連接OE.則OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三點(diǎn)都在BC邊的中線(xiàn)上,且|AO|=2|OE|,所以O(shè)為△ABC重心.AB+AD+DC=
AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故為:3.38.在極坐標(biāo)系中,直線(xiàn)l經(jīng)過(guò)圓ρ=cosθ的圓心且與直線(xiàn)ρcosθ=3平行,則直線(xiàn)l與極軸的交點(diǎn)的極坐標(biāo)為_(kāi)_____.答案:由ρ=cosθ可知此圓的圓心為(12,0),直線(xiàn)ρcosθ=3是與極軸垂直的直線(xiàn),所以所求直線(xiàn)的極坐標(biāo)方程為ρcosθ=12,所以直線(xiàn)l與極軸的交點(diǎn)的極坐標(biāo)為(12,0).故為:(12,0).39.命題:“如果ab=0,那么a、b中至少有一個(gè)等于0.”的逆否命題為_(kāi)_____
______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個(gè)為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個(gè)為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:如果a、b都不為等于0.那么ab≠040.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以線(xiàn)段AB、AC為鄰邊的平行四邊形兩條對(duì)角線(xiàn)的長(zhǎng);
(2)設(shè)實(shí)數(shù)t滿(mǎn)足(AB-tOC)?OC=0,求t的值.答案:(1)(方法一)由題設(shè)知AB=(3,5),AC=(-1,1),則AB+AC=(2,6),AB-AC=(4,4).所以|AB+AC|=210,|AB-AC|=42.故所求的兩條對(duì)角線(xiàn)的長(zhǎng)分別為42、210.(方法二)設(shè)該平行四邊形的第四個(gè)頂點(diǎn)為D,兩條對(duì)角線(xiàn)的交點(diǎn)為E,則:E為B、C的中點(diǎn),E(0,1)又E(0,1)為A、D的中點(diǎn),所以D(1,4)故所求的兩條對(duì)角線(xiàn)的長(zhǎng)分別為BC=42、AD=210;(2)由題設(shè)知:OC=(-2,-1),AB-tOC=(3+2t,5+t).由(AB-tOC)?OC=0,得:(3+2t,5+t)?(-2,-1)=0,從而5t=-11,所以t=-115.或者:AB?OC=tOC2,AB=(3,5),t=AB?OC|OC|2=-11541.將圖形F按=(,)(其中)平移,就是將圖形F()A.向x軸正方向平移個(gè)單位,同時(shí)向y軸正方向平移個(gè)單位.B.向x軸負(fù)方向平移個(gè)單位,同時(shí)向y軸正方向平移個(gè)單位.C.向x軸負(fù)方向平移個(gè)單位,同時(shí)向y軸負(fù)方向平移個(gè)單位.D.向x軸正方向平移個(gè)單位,同時(shí)向y軸負(fù)方向平移個(gè)單位.答案:A解析:根據(jù)圖形容易得出結(jié)論.42.在市場(chǎng)上供應(yīng)的燈泡中,甲廠產(chǎn)品占70%,乙廠占30%,甲廠產(chǎn)品的合格率是95%,乙廠的合格率是80%,則從市場(chǎng)上買(mǎi)到一個(gè)甲廠生產(chǎn)的合格燈泡的概率是______.答案:由題意知本題是一個(gè)相互獨(dú)立事件同時(shí)發(fā)生的概率,∵甲廠產(chǎn)品占70%,甲廠產(chǎn)品的合格率是95%,∴從市場(chǎng)上買(mǎi)到一個(gè)甲廠生產(chǎn)的合格燈泡的概率是0.7×0.95=0.665故為:0.66543.如圖,直線(xiàn)l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設(shè)直線(xiàn)l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數(shù)y=tanx在(0,π2)上單調(diào)遞增,且函數(shù)值為正,所以tanα2>tanα3>0,即k2>k3>0.當(dāng)α為鈍角時(shí),tanα為負(fù),所以k1=tanα1<0.綜上k1<k3<k2,故選A.44.已知點(diǎn)A(-1,-2),B(2,3),若直線(xiàn)l:x+y-c=0與線(xiàn)段AB有公共點(diǎn),則直線(xiàn)l在y軸上的截距的取值范圍是()
A.[-3,5]
B.[-5,3]
C.[3,5]
D.[-5,-3]答案:A45.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______
種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:48046.(x3+1xx)10的展開(kāi)式中的第四項(xiàng)是______.答案:由二項(xiàng)式定理的通項(xiàng)公式可知(x3+1xx)10的展開(kāi)式中的第四項(xiàng)是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.47.已知向量a=(2,0),b=(1,x),且a、b的夾角為π3,則x=______.答案:由兩個(gè)向量的數(shù)量積的定義、數(shù)量積公式可得a?b=2+0=21+x2cosπ3=21+x2=12,x2=3,∴x=±3,故為±3.48.某化肥廠甲、乙兩個(gè)車(chē)間包裝肥料,在自動(dòng)包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱(chēng)其重量,分別記錄抽查數(shù)據(jù)如下:
甲:86、72、92、78、77;
乙:82、91、78、95、88
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說(shuō)明哪個(gè)車(chē)間產(chǎn)品較穩(wěn)定.答案:(1)因?yàn)殚g隔時(shí)間相同,故是系統(tǒng)抽樣.(2)莖葉圖如下:.(3)因?yàn)?x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車(chē)間產(chǎn)品較穩(wěn)定.49.若關(guān)于x,y的二元一次方程組m11mxy=m+12m至多有一組解,則實(shí)數(shù)m的取值范圍是______.答案:關(guān)于x,y的二元一次方程組m11mxy=m+12m即二元一次方程組mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)當(dāng)m-1≠0時(shí)(m2-1)x=m(m-1)至多有一組解∴m≠1故為:(-∞,1)∪(1,+∞)50.如圖:已知圓上的弧
AC=
BD,過(guò)C點(diǎn)的圓的切線(xiàn)與BA的延長(zhǎng)線(xiàn)交于E點(diǎn),證明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因?yàn)锳C=BD,所以∠BCD=∠ABC.又因?yàn)镋C與圓相切于點(diǎn)C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因?yàn)椤螮CB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)第2卷一.綜合題(共50題)1.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時(shí),盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.2.設(shè)a1,a2,…,an為實(shí)數(shù),證明:a1+a2+…+ann≤a21+a22+…+a2nn.答案:證明:不妨設(shè)a1≤a2≤…≤an,則由排序原理得:a12+a22+…+an2=a1a1+a2a2+…+anana12+a22+…+an2≤a1a2+a2a3+…+ana1a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2…a12+a22+…+an2≤a1an+a2a1+…+anan-1.將上述n個(gè)式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式兩邊除以n2,并開(kāi)方可得:a1+a2+…+ann≤a21+a22+…+a2nn.3.螺母是由
______和
______兩個(gè)簡(jiǎn)單幾何體構(gòu)成的.答案:根據(jù)螺母的結(jié)構(gòu)特征知,是由正六棱柱里面挖去的一個(gè)圓柱構(gòu)成的,故為:正六棱柱,圓柱.4.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(xiàn)(
)。答案:圓,雙曲線(xiàn)5.在班級(jí)隨機(jī)地抽取8名學(xué)生,得到一組數(shù)學(xué)成績(jī)與物理成績(jī)的數(shù)據(jù):
數(shù)學(xué)成績(jī)6090115809513580145物理成績(jī)4060754070856090(1)計(jì)算出數(shù)學(xué)成績(jī)與物理成績(jī)的平均分及方差;
(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強(qiáng)弱;(r≥0.75為強(qiáng))
(3)求出數(shù)學(xué)成績(jī)x與物理成績(jī)y的線(xiàn)性回歸直線(xiàn)方程,并預(yù)測(cè)數(shù)學(xué)成績(jī)?yōu)?10的同學(xué)的物理成績(jī).答案:(1)計(jì)算出數(shù)學(xué)成績(jī)與物理成績(jī)的平均分及方差;.x=100,.y=65,數(shù)學(xué)成績(jī)方差為750,物理成績(jī)方差為306.25;(4分)(2)求相關(guān)系數(shù)r的值,并判斷相關(guān)性的強(qiáng)弱;r=6675≈0.94>0.75,相關(guān)性較強(qiáng);(8分)(3)求出數(shù)學(xué)成績(jī)x與物理成績(jī)y的線(xiàn)性回歸直線(xiàn)方程,并預(yù)測(cè)數(shù)學(xué)成績(jī)?yōu)?10的同學(xué)的物理成績(jī).y=0.6x+5,預(yù)測(cè)數(shù)學(xué)成績(jī)?yōu)?10的同學(xué)的物理成績(jī)?yōu)?1.(12分)6.已知α1,α2,…αn∈(0,π),n是大于1的正整數(shù),求證:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:證明:下面用數(shù)學(xué)歸納法證明(1)n=2時(shí),|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|?|sinα2|<sinα1+sinα2,所以n=2時(shí)成立.(2)假設(shè)n=k(k≥2)時(shí)成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk當(dāng)n=k+1時(shí),|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|?|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1時(shí)也成立.由(1)(2)得,原式成立.7.由1、2、3可以組成______個(gè)沒(méi)有重復(fù)數(shù)字的兩位數(shù).答案:沒(méi)有重復(fù)數(shù)字的兩位數(shù)共有3×2=6個(gè)故為:68.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為_(kāi)_____.答案:∵E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,∴EF是梯形的中位線(xiàn),設(shè)兩個(gè)梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:59.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對(duì)其中6題,乙能答對(duì)其中8題.若規(guī)定每次考試分別都從這10題中隨機(jī)抽出3題進(jìn)行測(cè)試,至少答對(duì)2題算合格.
(1)分別求甲、乙兩人考試合格的概率;
(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨(dú)立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.10.求兩條平行直線(xiàn)3x-4y-11=0與6x-8y+4=0的距離是()
A.3
B.
C.
D.4答案:B11.下列給變量賦值的語(yǔ)句正確的是()
A.5=a
B.a(chǎn)+2=a
C.a(chǎn)=b=4
D.a(chǎn)=2*a答案:D12.已知空間三點(diǎn)A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是
______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°13.如果命題“曲線(xiàn)C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解”是正確的,則下列命題中正確的是()
A.曲線(xiàn)C是方程f(x,y)=0的曲線(xiàn)
B.方程f(x,y)=0的每一組解對(duì)應(yīng)的點(diǎn)都在曲線(xiàn)C上
C.不滿(mǎn)足方程f(x,y)=0的點(diǎn)(x,y)不在曲線(xiàn)C上
D.方程f(x,y)=0是曲線(xiàn)C的方程答案:C14.求由曲線(xiàn)圍成的圖形的面積.答案:面積為解析:當(dāng),時(shí),方程化成,即.上式表示圓心在,半徑為的圓.所以,當(dāng),時(shí),方程表示在第一象限的部分以及軸,軸負(fù)半軸上的點(diǎn),.同理,當(dāng),時(shí),方程表示在第四象限的部分以及軸負(fù)半軸上的點(diǎn);當(dāng),時(shí),方程表示圓在第二象限的部分以及軸負(fù)半軸上的點(diǎn);當(dāng),時(shí),方程表示圓在第三象限部分.以上合起來(lái)構(gòu)成如圖所示的圖形,面積為.15.設(shè)i為虛數(shù)單位,若(x+i)(1-i)=y,則實(shí)數(shù)x,y滿(mǎn)足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C16.(本小題滿(mǎn)分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿(mǎn)足153=13+53+33,即這個(gè)整數(shù)等于它各位上的數(shù)字的立方的和,我們稱(chēng)這樣的數(shù)為“水仙花數(shù)”.請(qǐng)您設(shè)計(jì)一個(gè)算法,找出大于100,小于1000的所有“水仙花數(shù)”.
(1)用自然語(yǔ)言寫(xiě)出算法;
(2)畫(huà)出流程圖.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,則執(zhí)行第三步,否則算法結(jié)束.第三步,若這個(gè)數(shù)i等于它各位上的數(shù)字的立方的和,則輸出這個(gè)數(shù).第四步,i=i+1,返回第二步.(2)程序框圖,如右圖所示.17.用反證法證明某命題時(shí),對(duì)結(jié)論:“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”正確的反設(shè)為()
A.a(chǎn),b,c中至少有兩個(gè)偶數(shù)
B.a(chǎn),b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù)
C.a(chǎn),b,c都是奇數(shù)
D.a(chǎn),b,c都是偶數(shù)答案:B18.假設(shè)兩圓互相外切,求證:用連心線(xiàn)做直徑的圓,必與前兩圓的外公切線(xiàn)相切.答案:證明:設(shè)⊙O1及⊙O2為互相外切的兩個(gè)圓,其一外公切線(xiàn)為A1A2,切點(diǎn)為A1及A2令點(diǎn)O為連心線(xiàn)O1O2的中點(diǎn),過(guò)O作OA⊥A1A2,由直角梯形的中位線(xiàn)性質(zhì)得:OA=12(O1A1+O2A2)=12O1O2,∴以O(shè)1O2為直徑,即以O(shè)為圓心,OA為半徑的圓必與直線(xiàn)A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線(xiàn).19.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()
A.{2,1}
B.{(2,1)}
C.{1,2}
D.{(1,2)}答案:D20.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C21.關(guān)于x的方程ax+b=0,當(dāng)a,b滿(mǎn)足條件______
時(shí),方程的解集是有限集;滿(mǎn)足條件______
時(shí),方程的解集是無(wú)限集;滿(mǎn)足條件______
時(shí),方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個(gè)解時(shí),為有限集,所以a,b滿(mǎn)足條件是:a≠0,b∈R;滿(mǎn)足條件a=0,b=0時(shí),方程有無(wú)數(shù)組解,方程的解集是無(wú)限集;滿(mǎn)足條件
a=0,b≠0
時(shí),方程無(wú)解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;
a=0,b≠0.22.在極坐標(biāo)系中,圓ρ=-2cosθ的圓心的極坐標(biāo)是()
A.(1,)
B.(1,-)
C.(1,0)
D.(1,π)答案:D23.與橢圓+y2=1共焦點(diǎn)且過(guò)點(diǎn)P(2,1)的雙曲線(xiàn)方程是()
A.-y2=1
B.-y2=1
C.-=1
D.x2-=1答案:B24.在復(fù)數(shù)范圍內(nèi)解方程|z|2+(z+.z)i=3-i2+i(i為虛數(shù)單位).答案:原方程化簡(jiǎn)為|z|2+(z+.z)i=1-i,設(shè)z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.25.下列說(shuō)法中正確的有()
①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.
④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個(gè)極端值的影響,平均數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.正確向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是幾何概型,故④不正確,故選B.26.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點(diǎn)P在平面α內(nèi)的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線(xiàn)的一部分D.拋物線(xiàn)的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內(nèi)的軌跡是橢圓的一部分,故選B.27.復(fù)數(shù)Z=arccosx-π+(-2x)i(x∈R,i是虛數(shù)單位),在復(fù)平面上的對(duì)應(yīng)點(diǎn)只可能位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴復(fù)數(shù)Z對(duì)應(yīng)的點(diǎn)的實(shí)部和虛部都小于零,∴復(fù)數(shù)在第三象限,故選C.28.某研究小組在一項(xiàng)實(shí)驗(yàn)中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點(diǎn)圖,下列函數(shù)中,最能近似刻畫(huà)y與t之間關(guān)系的是(
)
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D29.已知直線(xiàn)方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關(guān)系()
A.平行
B.重合
C.相交
D.以上答案都不對(duì)答案:A30.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展開(kāi)式中x的系數(shù)為13,則x2的系數(shù)為()A.31B.40C.31或40D.71或80答案:(1+2x)m的展開(kāi)式中x的系數(shù)為2Cm1=2m,(1+3x)n的展開(kāi)式中x的系數(shù)為3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展開(kāi)式中的x2系數(shù)為22Cm2,(1+3x)n的展開(kāi)式中的x2系數(shù)為32Cn2∴當(dāng)n=1m=5時(shí),x2的系數(shù)為22Cm2+32Cn2=40當(dāng)n=3m=2時(shí),x2的系數(shù)為22Cm2+32Cn2=31故選C.31.圓錐曲線(xiàn)G的一個(gè)焦點(diǎn)是F,與之對(duì)應(yīng)的準(zhǔn)線(xiàn)是,過(guò)F作直線(xiàn)與G交于A、B兩點(diǎn),以AB為直徑作圓M,圓M與的位置關(guān)系決定G
是何種曲線(xiàn)之間的關(guān)系是:______
圓M與的位置相離相切相交G
是何種曲線(xiàn)答案:設(shè)圓錐曲線(xiàn)過(guò)焦點(diǎn)F的弦為AB,過(guò)A、B分別向相應(yīng)的準(zhǔn)線(xiàn)作垂線(xiàn)AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.設(shè)以AB為直徑的圓半徑為r,圓心到準(zhǔn)線(xiàn)的距離為d,即有r=de,橢圓的離心率
0<e<1,此時(shí)r<d,圓M與準(zhǔn)線(xiàn)相離;拋物線(xiàn)的離心率
e=1,此時(shí)r=d,圓M與準(zhǔn)線(xiàn)相切;雙曲線(xiàn)的離心率
e>1,此時(shí)r>d,圓M與準(zhǔn)線(xiàn)相交.故為:橢圓、拋物線(xiàn)、雙曲線(xiàn).32.如圖:一個(gè)力F作用于小車(chē)G,使小車(chē)G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車(chē)的位移方向的夾角為60°,則F在小車(chē)位移方向上的正射影的數(shù)量為_(kāi)_____,力F做的功為_(kāi)_____牛米.答案:如圖,∵|F|=50,且F與小車(chē)的位移方向的夾角為60°,∴F在小車(chē)位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車(chē)G,使小車(chē)G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.33.兩不重合直線(xiàn)l1和l2的方向向量分別為答案:∵直線(xiàn)l1和l2的方向向量分別為34.設(shè)直線(xiàn)的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線(xiàn)的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.35.已知點(diǎn)A(-1,-2),B(2,3),若直線(xiàn)l:x+y-c=0與線(xiàn)段AB有公共點(diǎn),則直線(xiàn)l在y軸上的截距的取值范圍是()
A.[-3,5]
B.[-5,3]
C.[3,5]
D.[-5,-3]答案:A36.P是△ABC所在平面上的一點(diǎn),且滿(mǎn)足,若△ABC的面積為1,則△PAB的面積為()
A.
B.
C.
D.答案:B37.若兩直線(xiàn)l1,l2的傾斜角分別為α1,α2,則下列四個(gè)命題中正確的是()
A.若α1<α2,則兩直線(xiàn)斜率k1<k2
B.若α1=α2,則兩直線(xiàn)斜率k1=k2
C.若兩直線(xiàn)斜率k1<k2,則α1<α2
D.若兩直線(xiàn)斜率k1=k2,則α1=α2答案:D38.如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B),其中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤(pán)玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)再隨機(jī)停下(指針固定不動(dòng),當(dāng)指針恰好落在分界線(xiàn)時(shí),則這次轉(zhuǎn)動(dòng)無(wú)效,重新開(kāi)始)為一次游戲,記轉(zhuǎn)盤(pán)(A)指針?biāo)鶎?duì)的數(shù)為X轉(zhuǎn)盤(pán)(B)指針對(duì)的數(shù)為Y設(shè)X+Yξ,每次游戲得到的獎(jiǎng)勵(lì)分為ξ分.
(1)求X<2且Y>1時(shí)的概率
(2)某人玩12次游戲,求他平均可以得到多少獎(jiǎng)勵(lì)分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎(jiǎng)勵(lì)分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎(jiǎng)勵(lì)分為12×Eξ=50.39.不等式的解集是
.答案:[0,2]解析:本小題主要考查根式不等式的解法,去掉根號(hào)是解根式不等式的基本思路,也考查了轉(zhuǎn)化與化歸的思想.原不等式等價(jià)于解得0≤x≤2.40.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個(gè)虛根為_(kāi)_____.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個(gè)虛根為-1-5±10-25i4,-1+5±10+25i4中的一個(gè)故為:-1-5+10-25i4.41.請(qǐng)輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為_(kāi)_____.答案:INPUT表示輸入語(yǔ)句,輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為:INPUT“輸入一個(gè)奇數(shù)n”;n.故為:INPUT“輸入一個(gè)奇數(shù)n”;n.42.如圖,圓與圓內(nèi)切于點(diǎn),其半徑分別為與,圓的弦交圓于點(diǎn)(不在上),求證:為定值。
答案:見(jiàn)解析解析:考察圓的切線(xiàn)的性質(zhì)、三角形相似的判定及其性質(zhì),容易題。證明:由弦切角定理可得43.某工廠生產(chǎn)A,B,C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A型號(hào)產(chǎn)品有16件,則此樣本的容量為()
A.40
B.80
C.160
D.320答案:B44.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()
A.3
B.4
C.5
D.6答案:C45.某次我市高三教學(xué)質(zhì)量檢測(cè)中,甲、乙、丙三科考試成績(jī)的直方圖如如圖所示(由于人數(shù)眾多,成績(jī)分布的直方圖可視為正態(tài)分布),則由如圖曲線(xiàn)可得下列說(shuō)法中正確的一項(xiàng)是()
A.甲科總體的標(biāo)準(zhǔn)差最小
B.丙科總體的平均數(shù)最小
C.乙科總體的標(biāo)準(zhǔn)差及平均數(shù)都居中
D.甲、乙、丙的總體的平均數(shù)不相同
答案:A46.回歸直線(xiàn)方程必定過(guò)點(diǎn)()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵線(xiàn)性回歸方程一定過(guò)這組數(shù)據(jù)的樣本中心點(diǎn),∴線(xiàn)性回歸方程y=bx+a表示的直線(xiàn)必經(jīng)過(guò)(.x,.y).故選D.47.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x對(duì)應(yīng),則a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x對(duì)應(yīng),則當(dāng)x=1時(shí),y=4;當(dāng)x=2時(shí),y=7;當(dāng)x=3時(shí),y=10;當(dāng)x=k時(shí),y=3k+1;又由a∈N*,∴a4≠10,則a2+3a=10,a4=3k+1解得a=2,k=5故為:2,548.設(shè)F1,F(xiàn)2是雙曲線(xiàn)的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線(xiàn)上,且·=0,則|PF1|·|PF2|值等于()
A.2
B.2
C.4
D.8答案:A49.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…當(dāng)n∈N*時(shí),試猜想12+22+32+…+n2的值,并用數(shù)學(xué)歸納法給予證明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用數(shù)學(xué)歸納法給予證明:(1)當(dāng)n=1時(shí),由已知得原式成立;(2)假設(shè)當(dāng)n=k時(shí),原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,當(dāng)n=k+1時(shí),12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1時(shí),原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.50.在z軸上與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離的點(diǎn)C的坐標(biāo)為
______.答案:由題意設(shè)C(0,0,z),∵C與點(diǎn)A(-4,1,7)和點(diǎn)B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點(diǎn)的坐標(biāo)是(0,0,149)故為:(0,0,149)第3卷一.綜合題(共50題)1.已知兩點(diǎn)A(2,1),B(3,3),則直線(xiàn)AB的斜率為()
A.2
B.
C.
D.-2答案:A2.若90°<θ<180°,曲線(xiàn)x2+y2sinθ=1表示()
A.焦點(diǎn)在x軸上的雙曲線(xiàn)
B.焦點(diǎn)在y軸上的雙曲線(xiàn)
C.焦點(diǎn)在x軸上的橢圓
D.焦點(diǎn)在y軸上的橢圓答案:D3.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點(diǎn),
(Ⅰ)求證:DM⊥EB;
(Ⅱ)設(shè)二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線(xiàn)AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,設(shè)CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設(shè)平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個(gè)法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22?12+02+
02=13,即cosβ=134.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.5.下列命題中,正確的是()
A.若a∥b,則a與b的方向相同或相反
B.若a∥b,b∥c,則a∥c
C.若兩個(gè)單位向量互相平行,則這兩個(gè)單位向量相等
D.若a=b,b=c,則a=c答案:D6.求證:答案:證明見(jiàn)解析解析:證:∴7.在15個(gè)村莊中有7個(gè)村莊交通不方便,現(xiàn)從中任意選10個(gè)村莊,用X表示這10個(gè)村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:1404298.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為3,點(diǎn)M在AB上,且AM=13AB,點(diǎn)P在平面ABCD上,且動(dòng)點(diǎn)P到直線(xiàn)A1D1的距離與P到點(diǎn)M的距離相等,在平面直角坐標(biāo)系xAy中,動(dòng)點(diǎn)P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線(xiàn)定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標(biāo)系,設(shè)P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.9.在莖葉圖中,樣本的中位數(shù)為_(kāi)_____,眾數(shù)為_(kāi)_____.答案:由莖葉圖可知樣本數(shù)據(jù)共有6,出現(xiàn)在中間兩位位的數(shù)據(jù)是20,24,所以樣本的中位數(shù)是(20+24)÷2=22由莖葉圖可知樣本數(shù)據(jù)中出現(xiàn)最多的是12,樣本的眾數(shù)是12為:22,1210.橢圓x=5cosαy=3sinα(α是參數(shù))的一個(gè)焦點(diǎn)到相應(yīng)準(zhǔn)線(xiàn)的距離為_(kāi)_____.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標(biāo)準(zhǔn)方程為:x225+y29=1,它的右焦點(diǎn)(4,0),右準(zhǔn)線(xiàn)方程為:x=254.一個(gè)焦點(diǎn)到相應(yīng)準(zhǔn)線(xiàn)的距離為:254-4=94.故為:94.11.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.12.設(shè)F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn),P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,則點(diǎn)P的縱坐標(biāo)為_(kāi)_____.答案:由題意,P是第一象限內(nèi)該橢圓上的一點(diǎn),且P、F1、F2三點(diǎn)構(gòu)成一直角三角形,故可分為兩類(lèi):①當(dāng)∠P為直角時(shí),設(shè)P的縱坐標(biāo)為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點(diǎn)∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當(dāng)∠PF2F1為直角時(shí),P的橫坐標(biāo)為3設(shè)P的縱坐標(biāo)為y(y>0),則(3)24+y2=1,∴y=12故為:33
或1213.一個(gè)底面是正三角形的三棱柱的側(cè)視圖如圖所示,則該幾何體的側(cè)面積等于()A.3B.6C.23D.2答案:由正視圖知:三棱柱是以底面邊長(zhǎng)為2,高為1的正三棱柱,側(cè)面積為3×2×1=6,故為:B.14.函數(shù)數(shù)列{fn(x)}滿(mǎn)足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]
(1)求f2(x),f3(x);
(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時(shí),f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時(shí),猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時(shí),fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對(duì)n=K+1時(shí),猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對(duì)一切n∈N*都成立.15.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線(xiàn)如圖所示,則有()
A.μ1<μ2,σ1>σ2
B.μ1<μ2,σ1<σ2
C.μ1>μ2,σ1>σ2
D.μ1>μ2,σ1<σ2
答案:A16.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實(shí)數(shù)a的取值范圍是
A.[-1,1]
B.[-1,3]
C.(-1,1)
D.(-1,3)答案:D17.下面玩擲骰子放球游戲,若擲出1點(diǎn)或6點(diǎn),甲盒放一球;若擲出2點(diǎn),3點(diǎn),4點(diǎn)或5點(diǎn),乙盒放一球,設(shè)擲n次后,甲、乙盒內(nèi)的球數(shù)分別為x、y.
(1)當(dāng)n=3時(shí),設(shè)x=3,y=0的概率;
(2)當(dāng)n=4時(shí),求|x-y|=2的概率.答案:由題意知,在甲盒中放一球概率為13,在乙盒放一球的概率為23(3分)(1)當(dāng)n=3時(shí),x=3,y=0的概率為C03(13)3(23)0=127(6分)(2)|x-y|=2時(shí),有x=3,y=1或x=1,y=3,它的概率為C14
(13)3(23)1+C34(13)1(23)3=4081(12分).18.將正方形ABCD沿對(duì)角線(xiàn)BD折起,使平面ABD⊥平面CBD,E是CD中點(diǎn),則∠AED的大小為()
A.45°
B.30°
C.60°
D.90°答案:D19.已知拋物線(xiàn)y2=4x上兩定點(diǎn)A、B分別在對(duì)稱(chēng)軸兩側(cè),F(xiàn)為焦點(diǎn),且|AF|=2,|BF|=5,在拋物線(xiàn)的AOB一段上求一點(diǎn)P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點(diǎn)A在第一象限,B點(diǎn)在第四象限.如圖.拋物線(xiàn)的焦點(diǎn)F(1,0),點(diǎn)A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線(xiàn)AB的方程為y-2-4-2=x-14-1,化簡(jiǎn)得2x+y-4=0.…(8分)再設(shè)在拋物線(xiàn)AOB這段曲線(xiàn)上任一點(diǎn)P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點(diǎn)P到直線(xiàn)AB的距離d=|2x0+y0-4|1+4=|2×y0
24+y0-4|5=|12(y0+1)2-92|5
…(9分)所以當(dāng)y0=-1時(shí),d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274
…(11分)此時(shí)P點(diǎn)坐標(biāo)為(14,-1).…(12分).20.設(shè)a∈(0,1)∪(1,+∞),對(duì)任意的x∈(0,12],總有4x≤logax恒成立,則實(shí)數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當(dāng)0<x≤12時(shí),函數(shù)y=4x的圖象如下圖所示:∵對(duì)任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線(xiàn)所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點(diǎn)時(shí),a=22,故虛線(xiàn)所示的y=logax的圖象對(duì)應(yīng)的底數(shù)a應(yīng)滿(mǎn)足22<a<1.故為:(22,1).21.在直徑為4的圓內(nèi)接矩形中,最大的面積是()
A.4
B.2
C.6
D.8答案:D22.某海域有A、B兩個(gè)島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚(yú)群洄游的路線(xiàn)像一個(gè)橢圓,其焦點(diǎn)恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過(guò)魚(yú)群.某日,研究人員在A、B兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),A、B兩島收到魚(yú)群反射信號(hào)的時(shí)間比為5:3.你能否確定魚(yú)群此時(shí)分別與A、B兩島的距離?答案:以AB的中點(diǎn)為原點(diǎn),AB所在直線(xiàn)為x軸建立直角坐標(biāo)系設(shè)橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因?yàn)榻裹c(diǎn)A的正西方向橢圓上的點(diǎn)為左頂點(diǎn),所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚(yú)群的運(yùn)動(dòng)軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚(yú)群反射信號(hào)的時(shí)間比為5:3,因此設(shè)此時(shí)距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚(yú)群分別距A,B兩島的距離為50海里和30海里.------(14分)23.某廠2011年的產(chǎn)值為a萬(wàn)元,預(yù)計(jì)產(chǎn)值每年以7%的速度增加,則該廠到2022年的產(chǎn)值為_(kāi)_____萬(wàn)元.答案:2011年產(chǎn)值為a,增長(zhǎng)率為7%,2012年產(chǎn)值為a+a×7%=a(1+7%),2013年產(chǎn)值為a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的產(chǎn)值為a(1+7%)11.故為:a(1+7%)11.24.向量b與a=(2,-1,2)共線(xiàn),且a?b=-18,則b的坐標(biāo)為_(kāi)_____.答案:因?yàn)橄蛄縝與a=(2,-1,2)共線(xiàn),所以設(shè)b=ma,因?yàn)榍襛?b=-18,所以ma2=-18,因?yàn)閨a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).25.直線(xiàn)(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是______.答案:直線(xiàn)(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點(diǎn)到直線(xiàn)的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(xiàn)(x+1)a+(y+1)b=0與圓x2+y2=2的位置關(guān)系是:相交或相切.故為:相交或相切.26.直線(xiàn)l過(guò)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),且與拋物線(xiàn)交于A、B兩點(diǎn),若線(xiàn)段AB的長(zhǎng)是8,AB的中點(diǎn)到y(tǒng)軸的距離是2,則此拋物線(xiàn)方程是()A.y2=12xB.y2=8xC.y2=6xD.y2=4x答案:設(shè)A(x1,y1),B(x2,y2),根據(jù)拋物線(xiàn)定義,x1+x2+p=8,∵AB的中點(diǎn)到y(tǒng)軸的距離是2,∴x1+x22=2,∴p=4;∴拋物線(xiàn)方程為y2=8x故選B27.一直線(xiàn)傾斜角的正切值為34,且過(guò)點(diǎn)P(1,2),則直線(xiàn)方程為_(kāi)_____.答案:因?yàn)橹本€(xiàn)傾斜角的正切值為34,即k=3,又直線(xiàn)過(guò)點(diǎn)P(1,2),所以直線(xiàn)的點(diǎn)斜式方程為y-2=34(x-1),整理得,3x-4y+5=0.故為3x-4y+5=0.28.如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內(nèi)挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點(diǎn)C、M,與AC交于N,見(jiàn)圖中非陰影部分),則該半圓的半徑長(zhǎng)為_(kāi)_____.答案:連接OM,則OM⊥AB.設(shè)⊙O的半徑OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故為33.29.方程組的解集是(
)
A.{(-3,0)}
B.{-3,0}
C.(-3,0)
D.{(0,-3)}
答案:A30.在空間中,有如下命題:
①互相平行的兩條直線(xiàn)在同一個(gè)平面內(nèi)的射影必然是互相平行的兩條直線(xiàn);
②若平面α∥平面β,則平面α內(nèi)任意一條直線(xiàn)m∥平面β;
③若平面α與平面β的交線(xiàn)為m,平面α內(nèi)的直線(xiàn)n⊥直線(xiàn)m,則直線(xiàn)n⊥平面β.
其中正確命題的個(gè)數(shù)為()個(gè).
A.0
B.1
C.2
D.3答案:B31.已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)M滿(mǎn)足|MA-MB|=4,則動(dòng)點(diǎn)M的軌跡為_(kāi)_____.答案:動(dòng)點(diǎn)M滿(mǎn)足|MA-MB|=4=|AB|,結(jié)合圖形思考判斷動(dòng)點(diǎn)M的軌跡為直線(xiàn)AB(不包括線(xiàn)段AB內(nèi)部的點(diǎn))上的兩條射線(xiàn).故為直線(xiàn)AB(不包括線(xiàn)段AB內(nèi)部的點(diǎn))上的兩條射線(xiàn).32.
008年北京成功舉辦了第29屆奧運(yùn)會(huì),中國(guó)取得了51金、21銀、28銅的驕人成績(jī).下表為北京奧運(yùn)會(huì)官方票務(wù)網(wǎng)站公布的幾種球類(lèi)比賽的門(mén)票價(jià)格,某球迷賽前準(zhǔn)備用12000元預(yù)定15張下表中球類(lèi)比賽的門(mén)票:
比賽項(xiàng)目
票價(jià)(元/場(chǎng))
籃球
1000
足球
800
乒乓球
500
若在準(zhǔn)備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個(gè)球迷想預(yù)定上表中三種球類(lèi)門(mén)票,其中足球門(mén)票數(shù)與乒乓球門(mén)票數(shù)相同,且足球門(mén)票的費(fèi)用不超過(guò)男籃門(mén)票的費(fèi)用,則可以預(yù)訂男籃門(mén)票數(shù)為
A.2
B.3
C.4
D.5
答案:D33.如圖,AB是平面a的斜線(xiàn)段,A為斜足,若點(diǎn)P在平面a內(nèi)運(yùn)動(dòng),使得△ABP的面積為定值,則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線(xiàn)D.兩條平行直線(xiàn)答案:本題其實(shí)就是一個(gè)平面斜截一個(gè)圓柱表面的問(wèn)題,因?yàn)槿切蚊娣e為定值,以AB為底,則底邊長(zhǎng)一定,從而可得P到直線(xiàn)AB的距離為定值,分析可得,點(diǎn)P的軌跡為一以AB為軸線(xiàn)的圓柱面,與平面α的交線(xiàn),且α與圓柱的軸線(xiàn)斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.34.設(shè)A=xn+x-n,B=xn-1+x1-n,當(dāng)x∈R+,n∈N+時(shí),求證:A≥B.答案:證明:A-B=(xn+x-n)-(xn-1+x1-n)=x-n(x2n+1-x2n-1-x)=x-n[x(x2n-1-1)-(x2n-1-1)]=x-n(x-1)(x2n-1-1).由x∈R+,x-n>0,得當(dāng)x≥1時(shí),x-1≥0,x2n-1-1≥0;當(dāng)x<1時(shí),x-1<0,x2n-1<0,即x-1與x2n-1-1同號(hào).∴A-B≥0.∴A≥B.35.若f(x)=x2,則對(duì)任意實(shí)數(shù)x1,x2,下列不等式總成立的是(
)
A.f()≤
B.f()<
C.f()≥
D.f()>答案:A36.一個(gè)盒子中裝有4張卡片,上面分別寫(xiě)著四個(gè)函數(shù):f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個(gè)新函數(shù),所得函數(shù)為奇函數(shù)的概率是______.答案:要使所得函數(shù)為奇函數(shù),取出的兩個(gè)函數(shù)必須是一個(gè)奇函數(shù)、一個(gè)偶函數(shù).而所給的4個(gè)函數(shù)中,有2個(gè)奇函數(shù)、2個(gè)偶函數(shù).所有的取法種數(shù)為C24=6,滿(mǎn)足條件的取法有2×2=4種,故所得函數(shù)為奇函數(shù)的概率是46=23,故為23.37.(選做題)(幾何證明選講選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點(diǎn)D,AD=2,則∠C的大小為_(kāi)_____.答案:∵∠B=90°,AB=4,BC為圓的直徑∴AB與圓相切,由切割線(xiàn)定理得,AB2=AD?AC∴AC=8故∠C=30°故為:30°38.已知拋物線(xiàn)C:y2=4x的焦點(diǎn)為F,點(diǎn)A在拋物線(xiàn)C上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)A,P滿(mǎn)足AP=-2FA,求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)M(m,0),其中m為常數(shù),m∈R+,點(diǎn)A到M的距離記為d,求d的最小值.答案:(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),點(diǎn)A的坐標(biāo)為(xA,yA),則AP=(x-xA,y-yA),因?yàn)镕的坐標(biāo)為(1,0),所以FA=(xA-1,yA),因?yàn)锳P=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到動(dòng)點(diǎn)P的軌跡方程為y2=8-4x;(2)由題意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0時(shí),dmin=m;m-2>0,即m>2,xA=m-2時(shí),dmin=-4-4m.39.某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會(huì)的干部競(jìng)選.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年華師大新版八年級(jí)數(shù)學(xué)下冊(cè)月考試卷
- 團(tuán)隊(duì)建設(shè)的核心打造高效能、高技能的工程團(tuán)隊(duì)
- 2024-2025學(xué)年江西省贛州市崇義縣數(shù)學(xué)三年級(jí)第一學(xué)期期末檢測(cè)試題含解析
- 2024年租賃合同:出租人授權(quán)承租人使用物業(yè)
- 創(chuàng)新設(shè)計(jì)助力社交媒體平臺(tái)的用戶(hù)體驗(yàn)升級(jí)
- 商業(yè)世界中的家庭教育親子互動(dòng)策略
- 企業(yè)會(huì)議室辦公家私合理布局與個(gè)性化需求匹配
- 培養(yǎng)創(chuàng)新能力的教育方法與案例分析
- 辦公自動(dòng)化中的禮儀規(guī)范與操作習(xí)慣
- 2025中國(guó)鐵塔陜西分公司校園招聘32人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 新譯林版五年級(jí)上冊(cè)各單元教學(xué)反思(文本版本)(共5則)
- 吞咽困難與認(rèn)知功能的關(guān)系探討
- 醫(yī)共體信息系統(tǒng)(HIS)需求說(shuō)明
- CBL胸腔穿刺教學(xué)設(shè)計(jì)
- 軟件工程填空題(18套試題與答案)
- 數(shù)據(jù)庫(kù)課程設(shè)計(jì)-教材購(gòu)銷(xiāo)管理系統(tǒng)
- 動(dòng)機(jī)式訪談法:改變從激發(fā)內(nèi)心開(kāi)始
- 旁站記錄新表(腳手架拆除)
- Web前端框架應(yīng)用之微商城項(xiàng)目教學(xué)介紹課件
- 如何降低住院病人壓瘡的發(fā)生率PDCA-任亮亮
- 教育學(xué) (202220232)學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫(kù)2023年
評(píng)論
0/150
提交評(píng)論