2023屆廣西防城港市港口區(qū)達標名校中考數(shù)學考試模擬沖刺卷含解析_第1頁
2023屆廣西防城港市港口區(qū)達標名校中考數(shù)學考試模擬沖刺卷含解析_第2頁
2023屆廣西防城港市港口區(qū)達標名校中考數(shù)學考試模擬沖刺卷含解析_第3頁
2023屆廣西防城港市港口區(qū)達標名校中考數(shù)學考試模擬沖刺卷含解析_第4頁
2023屆廣西防城港市港口區(qū)達標名校中考數(shù)學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)2.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點,點C是劣弧的中點,若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或43.計算的結果是()A.1 B.-1 C. D.4.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點,則k的值為()A.6 B.8 C.10 D.125.已知代數(shù)式x+2y的值是5,則代數(shù)式2x+4y+1的值是()A.6

B.7C.11D.126.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm7.如圖所示,若將△ABO繞點O順時針旋轉180°后得到△A1B1O,則A點的對應點A1點的坐標是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)8.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.9.據(jù)國土資源部數(shù)據(jù)顯示,我國是全球“可燃冰”資源儲量最多的國家之一,海、陸總儲量約為39000000000噸油當量,將39000000000用科學記數(shù)法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×10910.函數(shù)y=中自變量x的取值范圍是A.x≥0 B.x≥4 C.x≤4 D.x>4二、填空題(本大題共6個小題,每小題3分,共18分)11.拋物線y=x2﹣4x+與x軸的一個交點的坐標為(1,0),則此拋物線與x軸的另一個交點的坐標是______.12.在平面直角坐標系的第一象限內(nèi),邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a),如圖,若曲線y=(x>0)與此正方形的邊有交點,則a的取值范圍是_______.13.=_____.14.在一個不透明的口袋里,裝有僅顏色不同的黑球、白球若干只.某小組做摸球實驗:將球攪勻后從中隨機摸出一個,記下顏色,再放回袋中,不斷重復.下表是活動中的一組數(shù)據(jù),則摸到白球的概率約是_____.摸球的次數(shù)n1001502005008001000摸到白球的次數(shù)m5896116295484601摸到白球的頻率m/n0.580.640.580.590.6050.60115.如圖,PA,PB分別為的切線,切點分別為A、B,,則______.16.計算的結果等于______________________.三、解答題(共8題,共72分)17.(8分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.18.(8分)如圖所示,平面直角坐標系中,O為坐標原點,二次函數(shù)的圖象與x軸交于、B兩點,與y軸交于點C;(1)求c與b的函數(shù)關系式;(2)點D為拋物線頂點,作拋物線對稱軸DE交x軸于點E,連接BC交DE于F,若AE=DF,求此二次函數(shù)解析式;(3)在(2)的條件下,點P為第四象限拋物線上一點,過P作DE的垂線交拋物線于點M,交DE于H,點Q為第三象限拋物線上一點,作于N,連接MN,且,當時,連接PC,求的值.19.(8分)在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規(guī)則如下:在兩個盒子內(nèi)分別裝入標有數(shù)字1,2,3,4的四個和標有數(shù)字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數(shù)字之和小于5,那么小王去,否則就是小李去.用樹狀圖或列表法求出小王去的概率;小李說:“這種規(guī)則不公平”,你認同他的說法嗎?請說明理由.20.(8分)2017年10月31日,在廣州舉行的世界城市日全球主場活動開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.(1)求甲種樹和乙種樹的單價;(2)按學校規(guī)劃,準備購買甲、乙兩種樹共200棵,且甲種樹的數(shù)量不少于乙種樹的數(shù)量的,請設計出最省錢的購買方案,并說明理由.21.(8分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?22.(10分)解不等式組:.23.(12分)從一幢建筑大樓的兩個觀察點A,B觀察地面的花壇(點C),測得俯角分別為15°和60°,如圖,直線AB與地面垂直,AB=50米,試求出點B到點C的距離.(結果保留根號)24.如圖,某中學數(shù)學課外學習小組想測量教學樓的高度,組員小方在處仰望教學樓頂端處,測得,小方接著向教學樓方向前進到處,測得,已知,,.(1)求教學樓的高度;(2)求的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得則易得A點坐標和O點坐標,再利用勾股定理計算出然后根據(jù)第二象限點的坐標特征可寫出B點坐標;由旋轉的性質(zhì)得則點A′與點B重合,于是可得點A′的坐標.詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點坐標為(?4,0),O點坐標為(0,0),在Rt△BOC中,∴B點坐標為∵△OAB按順時針方向旋轉,得到△OA′B′,∴∴點A′與點B重合,即點A′的坐標為故選D.點睛:考查圖形的旋轉,等邊三角形的性質(zhì).求解時,注意等邊三角形三線合一的性質(zhì).2、C【解析】

由點C是劣弧AB的中點,得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質(zhì)得到PD=2,于是得到結論.【詳解】∵點C是劣弧AB的中點,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對稱性得,當P在OC的左側時,PB=3+2=5,∴PB的長度為1或5.故選C.【點睛】考查了圓周角,弧,弦的關系,勾股定理,垂徑定理,正確左側圖形是解題的關鍵.3、C【解析】

原式通分并利用同分母分式的減法法則計算,即可得到結果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.4、B【解析】

根據(jù)勾股定理得到OA==5,根據(jù)菱形的性質(zhì)得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結論.【詳解】∵點A的坐標為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,菱形的性質(zhì),勾股定理,正確的識別圖形是解題的關鍵.5、C【解析】

根據(jù)題意得出x+2y=5,將所求式子前兩項提取2變形后,把x+2y=5代入計算即可求出值.【詳解】∵x+2y=5,∴2x+4y=10,則2x+4y+1=10+1=1.故選C.【點睛】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.6、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關鍵.7、A【解析】

由題意可知,點A與點A1關于原點成中心對稱,根據(jù)圖象確定點A的坐標,即可求得點A1的坐標.【詳解】由題意可知,點A與點A1關于原點成中心對稱,∵點A的坐標是(﹣3,2),∴點A關于點O的對稱點A'點的坐標是(3,﹣2).故選A.【點睛】本題考查了中心對稱的性質(zhì)及關于原點對稱點的坐標的特征,熟知中心對稱的性質(zhì)及關于原點對稱點的坐標的特征是解決問題的關鍵.8、D【解析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點:D.9、A【解析】

用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】39000000000=3.9×1.故選A.【點睛】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).10、B【解析】

根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,列不等式求解.【詳解】根據(jù)題意得:x﹣1≥0,解得x≥1,則自變量x的取值范圍是x≥1.故選B.【點睛】本題主要考查函數(shù)自變量的取值范圍的知識點,注意:二次根式的被開方數(shù)是非負數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、(3,0)【解析】

把交點坐標代入拋物線解析式求m的值,再令y=0解一元二次方程求另一交點的橫坐標.【詳解】把點(1,0)代入拋物線y=x2-4x+中,得m=6,所以,原方程為y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴拋物線與x軸的另一個交點的坐標是(3,0).故答案為(3,0).【點睛】本題考查了點的坐標與拋物線解析式的關系,拋物線與x軸交點坐標的求法.本題也可以用根與系數(shù)關系直接求解.12、【解析】

因為A點的坐標為(a,a),則C(a﹣1,a﹣1),根據(jù)題意只要分別求出當A點或C點在曲線上時a的值即可得到答案.【詳解】解:∵A點的坐標為(a,a),∴C(a﹣1,a﹣1),當C在雙曲線y=時,則a﹣1=,解得a=+1;當A在雙曲線y=時,則a=,解得a=,∴a的取值范圍是≤a≤+1.故答案為≤a≤+1.【點睛】本題主要考查反比例函數(shù)與幾何圖形的綜合問題,解此題的關鍵在于根據(jù)題意找到關鍵點,然后將關鍵點的坐標代入反比例函數(shù)求得確定值即可.13、1【解析】分析:第一項根據(jù)非零數(shù)的零次冪等于1計算,第二項根據(jù)算術平方根的意義化簡,第三項根據(jù)負整數(shù)指數(shù)冪等于這個數(shù)的正整數(shù)指數(shù)冪的倒數(shù)計算.詳解:原式=1+2﹣2=1.故答案為:1.點睛:本題考查了實數(shù)的運算,熟練掌握零指數(shù)冪、算術平方根的意義,負整數(shù)指數(shù)冪的運算法則是解答本題的關鍵.14、0.1【解析】

根據(jù)表格中的數(shù)據(jù),隨著實驗次數(shù)的增大,頻率逐漸穩(wěn)定在0.1左右,即為摸出白球的概率.【詳解】解:觀察表格得:通過多次摸球實驗后發(fā)現(xiàn)其中摸到白球的頻率穩(wěn)定在0.1左右,則P白球=0.1.故答案為0.1.【點睛】本題考查了利用頻率估計概率,在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.15、50°【解析】

由PA與PB都為圓O的切線,利用切線長定理得到,再利用等邊對等角得到一對角相等,由頂角的度數(shù)求出底角的度數(shù),再利用弦切角等于夾弧所對的圓周角,可得出,由的度數(shù)即可求出的度數(shù).【詳解】解:,PB分別為的切線,

,,

又,

,

則.

故答案為:【點睛】此題考查了切線長定理,切線的性質(zhì),以及等腰三角形的性質(zhì),熟練掌握定理及性質(zhì)是解本題的關鍵.16、【解析】

根據(jù)完全平方式可求解,完全平方式為【詳解】【點睛】此題主要考查二次根式的運算,完全平方式的正確運用是解題關鍵三、解答題(共8題,共72分)17、(1)相等,理由見解析;(2)2;(3).【解析】

(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結論;

(2)構造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結論;

(3)先構造出矩形,同(1)的方法得,∠BAD=∠CBP,進而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結論.【詳解】解:(1)BF=AE,理由:

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=∠D=90°,

∴∠BAE+∠DAE=90°,

∵AE⊥BF,

∴∠BAE+∠ABF=90°,

∴∠ABF=∠DAE,

在△ABF和△DAE中,∴△ABF≌△DAE,

∴BF=AE,(2)如圖2,

過點A作AM∥BC,過點C作CM∥AB,兩線相交于M,延長BF交CM于G,

∴四邊形ABCM是平行四邊形,

∵∠ABC=90°,

∴?ABCM是矩形,

∵AB=BC,

∴矩形ABCM是正方形,

∴AB=BC=CM,

同(1)的方法得,△ABD≌△BCG,

∴CG=BD,

∵點D是BC中點,

∴BD=BC=CM,

∴CG=CM=AB,

∵AB∥CM,

∴△AFB∽△CFG,∴(3)如圖3,在Rt△ABC中,AB=3,BC=4,

∴AC=5,

∵點D是BC中點,

∴BD=BC=2,

過點A作AN∥BC,過點C作CN∥AB,兩線相交于N,延長BF交CN于P,

∴四邊形ABCN是平行四邊形,

∵∠ABC=90°,∴?ABCN是矩形,

同(1)的方法得,∠BAD=∠CBP,

∵∠ABD=∠BCP=90°,

∴△ABD∽△BCP,∴∴∴CP=同(2)的方法,△CFP∽△AFB,∴∴∴CF=.【點睛】本題是四邊形綜合題,主要考查了正方形的性質(zhì)和判定,平行四邊形的判定,矩形的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),構造出(1)題的圖形,是解本題的關鍵.18、(1);(2);(3)【解析】

(1)把A(-1,0)代入y=x2-bx+c,即可得到結論;(2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,當x=0時,得到y(tǒng)=-b-1,根據(jù)等腰直角三角形的性質(zhì)得到D(,-b-2),將D(,-b-2)代入y=x2-bx-1-b解方程即可得到結論;(3)連接QM,DM,根據(jù)平行線的判定得到QN∥MH,根據(jù)平行線的性質(zhì)得到∠NMH=∠QNM,根據(jù)已知條件得到∠QMN=∠MQN,設QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,設MH=s,求得NH=t2-s2,根據(jù)勾股定理得到NH=1,根據(jù)三角函數(shù)的定義得到∠NMH=∠MDH推出∠NMD=90°;根據(jù)三角函數(shù)的定義列方程得到t1=,t2=-(舍去),求得MN=,根據(jù)三角函數(shù)的定義即可得到結論.【詳解】(1)把A(﹣1,0)代入,∴,∴;(2)由(1)得,,∵點D為拋物線頂點,∴,∴,當時,,∴,∴,∴,∴,∴,∴,將代入得,,解得:,(舍去),∴二次函數(shù)解析式為:;(3)連接QM,DM,∵,,∴,∴,∴,∵,∴,∵,∴,設,則,∴,同理,設,則,∴,在中,,∴,∴,∴,∴,∵,∴,∵,∴,∴;∵,∴,,∵,∴,即,解得:,(舍去),∴,∵,∴,∴,當時,,∴,∴,∴,∵,∴,∴,,,過P作于T,∴,∴,∴.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,平行線的性質(zhì),三角函數(shù)的定義,勾股定理,正確的作出輔助線構造直角三角形是解題的關鍵.19、(1);(2)規(guī)則是公平的;【解析】試題分析:(1)先利用畫樹狀圖展示所有12種等可能的結果數(shù),然后根據(jù)概率公式求解即可;(2)分別計算出小王和小李去植樹的概率即可知道規(guī)則是否公平.試題解析:(1)畫樹狀圖為:共有12種等可能的結果數(shù),其中摸出的球上的數(shù)字之和小于6的情況有9種,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴規(guī)則不公平.點睛:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)當購買1棵甲種樹、133棵乙種樹時,購買費用最低,理由見解析.【解析】

(1)設甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據(jù)“購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;

(2)設購買甲種樹a棵,則購買乙種樹(200-a)棵,根據(jù)甲種樹的數(shù)量不少于乙種樹的數(shù)量的可得出關于a的一元一次不等式,解之即可得出a的取值范圍,再由甲種樹的單價比乙種樹的單價貴,即可找出最省錢的購買方案.【詳解】解:(1)設甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據(jù)題意得:

,解得:答:甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)設購買甲種樹a棵,則購買乙種樹(200﹣a)棵,根據(jù)題意得:解得:∵a為整數(shù),∴a≥1.∵甲種樹的單價比乙種樹的單價貴,∴當購買1棵甲種樹、133棵乙種樹時,購買費用最低.【點睛】一元一次不等式的應用,二元一次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論