版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1附錄Ⅰ
截面的幾何性質(zhì)2§Ⅰ-1截面的靜矩和形心位置§Ⅰ-2極慣性矩·慣性矩·慣性積§Ⅰ-3慣性矩和慣性積的平行移軸公式
·組合截面的慣性矩和慣性積§Ⅰ-4慣性矩和慣性積的轉(zhuǎn)軸公式·截面的主慣性軸和主慣性矩§Ⅰ-5
計(jì)算慣性矩的近似方法附錄Ⅰ
截面的幾何性質(zhì)3截面的幾何性質(zhì)已學(xué):軸心受拉(壓)構(gòu)件:扭轉(zhuǎn)構(gòu)件:彎曲構(gòu)件:將學(xué):4截面的幾何性質(zhì)5截面的幾何性質(zhì)6截面的幾何性質(zhì)鋼軌嵌入式軌道結(jié)構(gòu)的橫截面——梯形箱型梁,結(jié)構(gòu)剛度很大,可以減少不均勻沉降和振動(dòng)。
軟土地區(qū)的新型無碴軌道系統(tǒng):
7一、靜矩截面的幾何性質(zhì)對
y
軸的靜矩:對
z
軸的靜矩:大小:正,負(fù),0。量綱:[長度]3§Ⅰ-1截面的靜矩和形心位置8二、截面圖形的形心截面圖形的形心=幾何形狀相同的均質(zhì)薄板重心則截面圖形對其對稱軸的靜矩恒為0。截面的幾何性質(zhì)結(jié)論:若Sy=0
若Sz=0反之亦成立。y
軸通過形心,z
軸通過形心,反之亦成立。9三、組合截面圖形的靜矩和形心[例1]
試確定左圖的形心。截面的幾何性質(zhì)801201010C2C110一、慣性矩和慣性半徑:對y
軸的慣性矩對z
軸的慣性矩大?。赫A烤V:[長度]4對y
軸的慣性半徑對z
軸的慣性半徑截面的幾何性質(zhì)§Ⅰ-2
極慣性矩
·
慣性矩·
慣性積11截面的幾何性質(zhì)同理:例:求圖示矩形截面對其對稱軸的慣性矩和慣性半徑。12dO例:對實(shí)心圓截面,有:d二、極慣性矩:截面的幾何性質(zhì)13空心圓截面:組合圖形的慣性矩:dDO截面的幾何性質(zhì)圓形截面:矩形截面:實(shí)心圓截面:14z
軸為對稱軸:圖形對任一包含對稱軸在內(nèi)的一對正交坐標(biāo)軸的慣性矩為0。三、慣性積:大?。赫?fù),0。量綱:[長度]4組合圖形的慣性積截面的幾何性質(zhì)慣性矩是對一根軸而言的,慣性積是對一對軸而言的,極慣性矩是對一點(diǎn)而言的。15一、平行移軸公式截面的幾何性質(zhì)§Ⅰ-3
慣性矩和慣性積的平行移軸公式已知:Iyc,Izc,Iyczc;求:
Iy,Iz,Iyz。16截面的幾何性質(zhì)在所有互相平行的軸中,截面圖形對形心軸的慣性矩最小。17zy解:dD[例2]
求圖示帶圓孔的圓形截面對y軸和z軸的慣性矩。截面的幾何性質(zhì)18BdA[例3]
求圖示圓對其切線AB的慣性矩。解:建立形心坐標(biāo)如圖,求圖形對形心軸的慣性矩。yzO截面的幾何性質(zhì)19截面的幾何性質(zhì)[例4]
求圖示截面圖形對水平形心軸y的慣性矩。①②10014016020yC解:(1)選參考系,確定形心C的位置:y′z(2)計(jì)算Iy
205050·z150100800500[例5]
計(jì)算圖示箱式截面對水平形心軸z的慣性矩Iz。截面的幾何性質(zhì)··yz’解:(1)選參考系確定形心位置:(2)計(jì)算Iz
21[例6]
電線鐵塔基座采用四個(gè)等邊角鋼組成L160×10mm,a=3m,試計(jì)算基座的形心主慣性矩。解:組合截面可以大大提高截面慣性矩。截面的幾何性質(zhì)22一、轉(zhuǎn)軸公式α逆時(shí)針轉(zhuǎn)為正。截面的幾何性質(zhì)§3-4
慣性矩、慣性積的轉(zhuǎn)軸公式23轉(zhuǎn)軸公式截面的幾何性質(zhì)24截面的幾何性質(zhì)轉(zhuǎn)軸公式25截面的幾何性質(zhì)二、形心主軸和形心主慣性矩使截面的慣性積為零的一對正交坐標(biāo)軸稱為主慣性軸,簡稱主軸;截面對主軸的慣性矩稱為主慣性矩。如果主軸的交點(diǎn)與截面形心重合,則稱其為形心主慣性軸,簡稱形心主軸;截面對形心
主軸的慣性矩稱為形心主慣性矩。形心軸y’、z’
不是形心主軸形心軸y、z
是形心主軸主軸不唯一形心主軸唯一26一、選擇題1、在下列關(guān)于平面圖形的結(jié)論中,
是錯(cuò)誤的。(A)圖形的對稱軸必定通過形心。(B)圖形兩個(gè)對稱軸的交點(diǎn)必為形心。(C)圖形對對稱軸的靜矩為零。(D)使靜矩為零的軸必為對稱軸。D本章習(xí)題截面的幾何性質(zhì)272、在平面圖形的幾何性質(zhì)中,
的值可正,可負(fù),也可為零。(A)靜矩和慣性矩。(B)極慣性矩和慣性矩。(C)慣性矩和慣性積。(D)靜矩和慣性積。D截面的幾何性質(zhì)283、設(shè)矩形對其一對稱軸z的慣性矩為I,則當(dāng)其高寬比保持不變,而面積增加1倍時(shí),該矩形對z軸的慣性矩將變?yōu)?/p>
。(A)2I
(B)4I
(C)8I
(D)16IB截面的幾何性質(zhì)294、若截面圖形有對稱軸,則該圖形對其對稱軸的
說法正確的是
。(A)靜矩為零,慣性矩不為零。(B)靜矩不為零,慣性矩為零。(C)靜矩和慣性矩均為零。(D)靜矩和慣性矩均不為零。A截面的幾何性質(zhì)305、直徑為D的圓對其形心軸的慣性半徑i=
。(A)D/2(B)D/4
(C)D/6(D)D/8B截面的幾何性質(zhì)316、若截面有一個(gè)對稱軸,則下列說法中,
是錯(cuò)誤的。(A)截面對對稱軸的靜矩為零。(B)對稱軸兩側(cè)的兩部分截面,對對稱軸的慣性矩相等。(C)截面對包含對稱軸的正交坐標(biāo)系的慣性積一定為零。(D)截面對包含對稱軸的正交坐標(biāo)系的慣性積不一定為零(這要取決坐標(biāo)原點(diǎn)是否位于截面形心)。D截面的幾何性質(zhì)327、任意圖形,若對某一對正交坐標(biāo)軸的慣性積為零,則這一對坐標(biāo)軸一定是該圖形的
。(A)形心軸(B)主慣性軸(C)形心主慣性軸(D)對稱軸
B截面的幾何性質(zhì)338、在圖形對通過某點(diǎn)的所有軸的慣性矩中,圖形對主慣性軸的慣性矩一定
。(A)最大(B)最?。–)最大或最小(D)為零C截面的幾何性質(zhì)349、有下述兩個(gè)結(jié)論;①對稱軸一定是形心主慣性軸;②形心主慣性軸一定是對稱軸。其中
。(A)①正確,②錯(cuò)誤。(B)①錯(cuò)誤,②正確。(C)①②正確。(D)①②錯(cuò)誤。A截面的幾何性質(zhì)3510、正交坐標(biāo)軸
y,z
軸為截面形心主慣性軸的條件是
。(A)Sy=Sz=0
(B)Iyz=0(C)Iy=Iz,Iyz=0
(D)Sy=Sz=0;Iyz=0D截面的幾何性質(zhì)3611、在yoz正交坐標(biāo)系中,設(shè)圖形對y,z軸的慣性矩分別為Iy和Iz
,則圖形對坐標(biāo)原點(diǎn)的極慣性矩
。(A)Ip=0
(B)Ip=Iy+Iz(C)(D)B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度行政單位合同內(nèi)部管理優(yōu)化與改進(jìn)合同3篇
- 2025年度內(nèi)墻粉刷施工與墻面涂料環(huán)保認(rèn)證合同3篇
- 二零二五年度文化場館保潔與文物保護(hù)合同3篇
- 二零二五年度農(nóng)業(yè)農(nóng)機(jī)信息化建設(shè)與維護(hù)合同3篇
- 2025年度新能源汽車居間買賣服務(wù)合同3篇
- 二零二五年度交通設(shè)施租賃合同范本3篇
- 農(nóng)村農(nóng)業(yè)勞務(wù)用工合同(2025年度)勞務(wù)派遣服務(wù)合同
- 2025年信用社黃金租賃合同模板3篇
- 2025年度汽車維修廠汽車用品銷售承包合同3篇
- 2024年中國環(huán)保健康濕毛巾市場調(diào)查研究報(bào)告
- 毛細(xì)管升高法測量液體表面張力系數(shù)
- 室內(nèi)覆蓋方案設(shè)計(jì)與典型場景
- 放射性粒子植入自我評估報(bào)告
- 2023年山西云時(shí)代技術(shù)有限公司招聘筆試題庫及答案解析
- 浙大中控DCS系統(tǒng)介紹(簡潔版)
- GB/T 16288-2008塑料制品的標(biāo)志
- GB/T 14486-2008塑料模塑件尺寸公差
- 北京市海淀區(qū)2022-2023學(xué)年高三期末考試歷史試題及答案
- 頂板管理實(shí)施細(xì)則
- 2022年杭州西湖文化旅游投資集團(tuán)有限公司招聘筆試試題及答案解析
- 中國青年運(yùn)動(dòng)史PPT模板
評論
0/150
提交評論