山西省名校2021-2022學年高三3月份模擬考試數(shù)學試題含解析_第1頁
山西省名校2021-2022學年高三3月份模擬考試數(shù)學試題含解析_第2頁
山西省名校2021-2022學年高三3月份模擬考試數(shù)學試題含解析_第3頁
山西省名校2021-2022學年高三3月份模擬考試數(shù)學試題含解析_第4頁
山西省名校2021-2022學年高三3月份模擬考試數(shù)學試題含解析_第5頁
免費預覽已結(jié)束,剩余17頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關(guān)于函數(shù),下列說法正確的是()A.函數(shù)的定義域為B.函數(shù)一個遞增區(qū)間為C.函數(shù)的圖像關(guān)于直線對稱D.將函數(shù)圖像向左平移個單位可得函數(shù)的圖像2.已知焦點為的拋物線的準線與軸交于點,點在拋物線上,則當取得最大值時,直線的方程為()A.或 B.或 C.或 D.3.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.4.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.設(shè)分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.6.中國古代數(shù)學名著《九章算術(shù)》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.47.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.8.復數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i9.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點;則下列命題為真命題的是()A. B. C. D.10.已知集合,集合,那么等于()A. B. C. D.11.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π12.已知函數(shù)與的圖象有一個橫坐標為的交點,若函數(shù)的圖象的縱坐標不變,橫坐標變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個零點,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.14.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.15.如圖,在等腰三角形中,已知,,分別是邊上的點,且,其中且,若線段的中點分別為,則的最小值是_____.16.如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內(nèi)任意一點,,,若,則的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知橢圓的左頂點為,右焦點為,為橢圓上兩點,圓.(1)若軸,且滿足直線與圓相切,求圓的方程;(2)若圓的半徑為,點滿足,求直線被圓截得弦長的最大值.18.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.19.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)把曲線向下平移個單位,然后各點橫坐標變?yōu)樵瓉淼谋兜玫角€(縱坐標不變),設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.20.(12分)已知函數(shù),.(1)當時,求不等式的解集;(2)當時,不等式恒成立,求實數(shù)的取值范圍.21.(12分)在平面直角坐標系xOy中,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標方程和直線l的普通方程;(2)若點P的極坐標為,,求的值.22.(10分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

化簡到,根據(jù)定義域排除,計算單調(diào)性知正確,得到答案.【詳解】,故函數(shù)的定義域為,故錯誤;當時,,函數(shù)單調(diào)遞增,故正確;當,關(guān)于的對稱的直線為不在定義域內(nèi),故錯誤.平移得到的函數(shù)定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,定義域,對稱,三角函數(shù)平移,意在考查學生的綜合應用能力.2.A【解析】

過作與準線垂直,垂足為,利用拋物線的定義可得,要使最大,則應最大,此時與拋物線相切,再用判別式或?qū)?shù)計算即可.【詳解】過作與準線垂直,垂足為,,則當取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.【點睛】本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學生轉(zhuǎn)化與化歸的思想,是一道中檔題.3.D【解析】

取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.4.A【解析】

設(shè)成立;反之,滿足,但,故選A.5.C【解析】

如圖所示:切點為,連接,作軸于,計算,,,,根據(jù)勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學生的計算能力和綜合應用能力.6.D【解析】

根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎(chǔ)題.7.C【解析】

首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.8.B【解析】

復數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點睛】本題考查復數(shù)的分類,屬于基礎(chǔ)題.9.A【解析】

先分別判斷每一個命題的真假,再利用復合命題的真假判斷確定答案即可.【詳解】當時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當直線和直線互相垂直時,,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當時,沒有零點,所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點睛】本題主要考查充要條件的判斷和兩直線的位置關(guān)系,考查二次函數(shù)的圖象,考查學生對這些知識的理解掌握水平.10.A【解析】

求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎(chǔ)題.11.C【解析】

兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.12.A【解析】

根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個橫坐標為的交點,則,,,,,若函數(shù)圖象的縱坐標不變,橫坐標變?yōu)樵瓉淼谋?,則,所以當時,,在有且僅有5個零點,,.故選:A.【點睛】本題考查三角函數(shù)圖象的性質(zhì)、三角函數(shù)的平移伸縮以及零點個數(shù)問題,考查轉(zhuǎn)化思想和計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:根據(jù)題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率14.【解析】

根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計算能力.15.【解析】

根據(jù)條件及向量數(shù)量積運算求得,連接,由三角形中線的性質(zhì)表示出.根據(jù)向量的線性運算及數(shù)量積公式表示出,結(jié)合二次函數(shù)性質(zhì)即可求得最小值.【詳解】根據(jù)題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數(shù)量積運算可知線段的中點分別為則由向量減法的線性運算可得所以因為,代入化簡可得因為所以當時,取得最小值因而故答案為:【點睛】本題考查了平面向量數(shù)量積的綜合應用,向量的線性運算及模的求法,二次函數(shù)最值的應用,屬于中檔題.16.【解析】

由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設(shè),又由,可知,從而可得,而點在橢圓上,所以將點的坐標代入橢圓方程中化簡可得結(jié)果.【詳解】設(shè),,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【點睛】此題考查的是利用橢圓中相關(guān)兩個點的關(guān)系求離心率,綜合性強,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】試題分析:(1)確定圓的方程,就是確定半徑的值,因為直線與圓相切,所以先確定直線方程,即確定點坐標:因為軸,所以,根據(jù)對稱性,可取,則直線的方程為,根據(jù)圓心到切線距離等于半徑得(2)根據(jù)垂徑定理,求直線被圓截得弦長的最大值,就是求圓心到直線的距離的最小值.設(shè)直線的方程為,則圓心到直線的距離,利用得,化簡得,利用直線方程與橢圓方程聯(lián)立方程組并結(jié)合韋達定理得,因此,當時,取最小值,取最大值為.試題解析:解:(1)因為橢圓的方程為,所以,.因為軸,所以,而直線與圓相切,根據(jù)對稱性,可取,則直線的方程為,即.由圓與直線相切,得,所以圓的方程為.(2)易知,圓的方程為.①當軸時,,所以,此時得直線被圓截得的弦長為.②當與軸不垂直時,設(shè)直線的方程為,,首先由,得,即,所以(*).聯(lián)立,消去,得,將代入(*)式,得.由于圓心到直線的距離為,所以直線被圓截得的弦長為,故當時,有最大值為.綜上,因為,所以直線被圓截得的弦長的最大值為.考點:直線與圓位置關(guān)系18.(1)詳見解析;(2)詳見解析.【解析】

(1)利用求導數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號,即可證明結(jié)論;(2)當時,不等式恒成立,分離參數(shù)只需時,恒成立,設(shè)(),需,根據(jù)(1)中的結(jié)論先求出,再構(gòu)造函數(shù)結(jié)合導數(shù)法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數(shù),則,所以在區(qū)間上是增函數(shù).又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當時,;當時,恒成立,設(shè)(),所以.由(1)可知,,使,所以,當時,,當時,,由此在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數(shù),所以,故.【點睛】本題考查導數(shù)的綜合應用,涉及到函數(shù)的單調(diào)性、函數(shù)的零點、極值最值、不等式的證明,分離參數(shù)是解題的關(guān)鍵,意在考查邏輯推理、數(shù)學計算能力,屬于較難題.19.(1),;(2).【解析】

(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以得,進而可化簡得出曲線的直角坐標方程;(2)根據(jù)變換得出的普通方程為,可設(shè)點的坐標為,利用點到直線的距離公式結(jié)合正弦函數(shù)的有界性可得出結(jié)果.【詳解】(1)由(為參數(shù)),得,化簡得,故直線的普通方程為.由,得,又,,.所以的直角坐標方程為;(2)由(1)得曲線的直角坐標方程為,向下平移個單位得到,縱坐標不變,橫坐標變?yōu)樵瓉淼谋兜玫角€的方程為,所以曲線的參數(shù)方程為(為參數(shù)).故點到直線的距離為,當時,最小為.【點睛】本題考查曲線的參數(shù)方程、極坐標方程與普通方程的相互轉(zhuǎn)化,同時也考查了利用橢圓的參數(shù)方程解決點到直線的距離最值的求解,考查計算能力,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論