版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.2.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點的坐標為則()A. B.C. D.3.函數(shù)在上的圖象大致為()A. B.C. D.4.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B. C. D.5.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.86.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.7.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.48.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.9.設(shè)實數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.1410.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.11.已知命題:“關(guān)于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是()A. B. C. D.12.在滿足,的實數(shù)對中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,且向量與的夾角為_______.14.過點,且圓心在直線上的圓的半徑為__________.15.若,則__________.16.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.18.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.19.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).20.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a21.(12分)某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;(3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,22.(10分)如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大??;(2)若,且直線與平面所成角為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.2.B【解析】
根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡即可求解.【詳解】在復(fù)平面內(nèi)對應(yīng)的點的坐標為,則,,∵,代入可得,解得.故選:B.【點睛】本題考查復(fù)數(shù)對應(yīng)點坐標的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.3.A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.4.D【解析】
由程序框圖確定程序功能后可得出結(jié)論.【詳解】執(zhí)行該程序可得.故選:D.【點睛】本題考查程序框圖.解題可模擬程序運行,觀察變量值的變化,然后可得結(jié)論,也可以由程序框圖確定程序功能,然后求解.5.C【解析】
設(shè)拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設(shè)點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設(shè)拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經(jīng)過拋物線的焦點,,是與的交點,又軸,∴可設(shè)點坐標為,代入,解得,又∵點在準線上,設(shè)過點的的垂線與交于點,,∴.故應(yīng)選C.【點睛】本題考查拋物線的性質(zhì),解題時只要設(shè)出拋物線的標準方程,就能得出點坐標,從而求得參數(shù)的值.本題難度一般.6.C【解析】
根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計算,可得結(jié)果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細心觀察,屬基礎(chǔ)題.7.D【解析】可以是共4個,選D.8.C【解析】
根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡后求得離心率.【詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.9.D【解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當目標函數(shù)過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標函數(shù)的最值,屬于基礎(chǔ)題.10.D【解析】
先求出球心到四個支點所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【詳解】設(shè)四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及球的性質(zhì)的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎(chǔ)題.11.B【解析】命題p:,為,又為真命題的充分不必要條件為,故12.A【解析】
由題可知:,且可得,構(gòu)造函數(shù)求導(dǎo),通過導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因為,,由題可知:時,則,所以,所以,當無限接近時,滿足條件,所以,所以要使得故當時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值和最值,以及運用構(gòu)造函數(shù)法和放縮法,同時考查轉(zhuǎn)化思想和解題能力.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據(jù)向量數(shù)量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積的定義,屬于基礎(chǔ)題.14.【解析】
根據(jù)弦的垂直平分線經(jīng)過圓心,結(jié)合圓心所在直線方程,即可求得圓心坐標.由兩點間距離公式,即可得半徑.【詳解】因為圓經(jīng)過點則直線的斜率為所以與直線垂直的方程斜率為點的中點坐標為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經(jīng)過圓心,且圓心在直線上,設(shè)圓心所以圓心滿足解得所以圓心坐標為則圓的半徑為故答案為:【點睛】本題考查了直線垂直時的斜率關(guān)系,直線與直線交點的求法,直線與圓的位置關(guān)系,圓的半徑的求法,屬于基礎(chǔ)題.15.【解析】
由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計算得解.【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.16.【解析】
由已知可得,結(jié)合雙曲線的定義可知,結(jié)合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問題,一般如果能結(jié)合幾何性質(zhì),可大大減少計算量.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)答案見解析.(2)【解析】
(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標系,則,,,,,,,,,,設(shè)平面的一個法向量,則即取,則,,所以,設(shè)平面的一個法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18.(1)證明見解析(2)【解析】
(1)取中點,連結(jié),證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結(jié),,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設(shè)平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點睛】本題考查了面面垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力.19.(1)證明見解析;(2)2【解析】
(1)在中,利用勾股定理,證得,又由題設(shè)條件,得到,利用線面垂直的判定定理,證得平面,進而得到;(2)設(shè)三棱臺和三棱柱的高都為上、下底面之間的距離為,根據(jù)棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因為,可得.又由,,平面,所以平面,因為平面,所以.(2)因為,可得,令,,設(shè)三棱臺和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點睛】本題主要考查了直線與平面垂直的判定與應(yīng)用,以及幾何體的體積公式的應(yīng)用,其中解答中熟記線面位置關(guān)系的判定定理與性質(zhì)定理,以及熟練應(yīng)用幾何體的體積公式進行求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.20.(I)an=2n-1,bn=【解析】
(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點睛】本題考查了等差數(shù)列,等比數(shù)列,裂項求和,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.21.(1)選取更合適;(2);(3)時,煤氣用量最小.【解析】
(1)根據(jù)散點圖的特點,可得更適合;(2)先建立關(guān)于的回歸方程,再得出關(guān)于的回歸方程;(3)寫出函數(shù)關(guān)系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選取更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型;(2)由公式可得:,,所以所求回歸直線方程為:;(3)根據(jù)題意,設(shè),則煤氣用量,當且僅當時,等號成立,即時,煤氣用量最小.【點睛】此題考查根據(jù)題意求回歸方程,利用線性回歸方程的求法得解,結(jié)合基本不等式求最值.22.(1);(2).【解析】
(1)分別取的中點為,易得兩兩垂直,以所在直線為軸建立空間直角坐標系,易得為平面的法向量,只需求出平面的法向量為,再利用計算即可;(2)求出,利用計算即可.【詳解】(1)分別取的中點為,連結(jié).因為∥,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年石家莊建筑工程分包合同
- 風電站電伴熱施工合同
- 幼兒培訓(xùn)中心轉(zhuǎn)讓協(xié)議
- 門店買賣合同樣本
- 政府機關(guān)減速帶建設(shè)協(xié)議
- 運動中心鋼結(jié)構(gòu)施工協(xié)議
- 港口給水系統(tǒng)安裝工程合同
- 廣告服務(wù)一體機租賃協(xié)議
- 住宅區(qū)景觀照明安裝協(xié)議
- 酒店物業(yè)管理合同管理
- 軟件項目開發(fā)投標文件技術(shù)方案
- 《設(shè)計質(zhì)量保證措施》
- 有關(guān)于企業(yè)的調(diào)研報告范文(10篇)
- 君樂寶在線測評題答案
- 2024年秋季新人教PEP版英語三年級上冊全冊教案
- 教育機構(gòu)合作伙伴招募方案
- 2022年農(nóng)業(yè)銀行法人信貸理論知識考試題庫(含答案)
- 2024年秋國家開放大學(xué)會計信息系統(tǒng)(本)客觀題及答案
- 在線招聘平臺人才匹配算法優(yōu)化與應(yīng)用推廣
- 重慶B卷歷年中考語文現(xiàn)代文閱讀之非連續(xù)性文本閱讀5篇(含答案)(2003-2023)
- 干部任免審批表樣表
評論
0/150
提交評論