2022-2023學年云南省玉溪市通海三中高三下學期聯考數學試題含解析_第1頁
2022-2023學年云南省玉溪市通海三中高三下學期聯考數學試題含解析_第2頁
2022-2023學年云南省玉溪市通海三中高三下學期聯考數學試題含解析_第3頁
2022-2023學年云南省玉溪市通海三中高三下學期聯考數學試題含解析_第4頁
2022-2023學年云南省玉溪市通海三中高三下學期聯考數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖象大致為()A. B.C. D.2.已知數列對任意的有成立,若,則等于()A. B. C. D.3.對某兩名高三學生在連續(xù)9次數學測試中的成績(單位:分)進行統計得到折線圖,下面是關于這兩位同學的數學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據甲同學成績折線圖提供的數據進行統計,估計該同學平均成績在區(qū)間110,120內;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數為()A.4 B.3 C.2 D.14.已知復數z1=3+4i,z2=a+i,且z1是實數,則實數a等于()A. B. C.- D.-5.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或6.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.907.已知復數,為的共軛復數,則()A. B. C. D.8.已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:根據該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元9.從5名學生中選出4名分別參加數學,物理,化學,生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數為A.48 B.72 C.90 D.9610.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.11.已知邊長為4的菱形,,為的中點,為平面內一點,若,則()A.16 B.14 C.12 D.812.如圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數學家狄里克雷對數論,數學分析和數學物理有突出貢獻,是解析數論的創(chuàng)始人之一.函數,稱為狄里克雷函數.則關于有以下結論:①的值域為;②;③;④其中正確的結論是_______(寫出所有正確的結論的序號)14.在平面直角坐標系中,點P在直線上,過點P作圓C:的一條切線,切點為T.若,則的長是______.15.正方形的邊長為2,圓內切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.16.等腰直角三角形內有一點P,,,,,則面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.已知等差數列的公差為,等差數列的公差為.設分別是數列的前項和,且,,(1)求數列的通項公式;(2)設,求數列的前項和.18.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.19.(12分)已知函數,其中.(Ⅰ)當時,求函數的單調區(qū)間;(Ⅱ)設,求證:;(Ⅲ)若對于恒成立,求的最大值.20.(12分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數的值;(2)設線段的中點為,其中為坐標原點,若,求的面積.21.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.22.(10分)設數列的前n項和滿足,,,(1)證明:數列是等差數列,并求其通項公式﹔(2)設,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

用偶函數的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數為偶函數,圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據函數的性質,辨析函數的圖像,排除法,屬于中檔題.2、B【解析】

觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數列中的方法,并能熟練運用對應方法求解.3、C【解析】

利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據甲同學成績折線圖提供的數據進行統計,估計該同學平均成績在區(qū)間[110,120]內,②正確;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉化思想以及計算能力,屬于基礎題.4、A【解析】分析:計算,由z1,是實數得,從而得解.詳解:復數z1=3+4i,z2=a+i,.所以z1,是實數,所以,即.故選A.點睛:本題主要考查了復數共軛的概念,屬于基礎題.5、A【解析】

利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點睛】本小題主要考查直線和圓的位置關系,考查數形結合的數學思想方法,屬于中檔題.6、A【解析】

利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.7、C【解析】

求出,直接由復數的代數形式的乘除運算化簡復數.【詳解】.故選:C【點睛】本題考查復數的代數形式的四則運算,共軛復數,屬于基礎題.8、D【解析】

用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.9、D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學生不參加任何比賽①當甲參加另外3場比賽時,共有?=72種選擇方案;②當甲學生不參加任何比賽時,共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點睛:本題以選擇學生參加比賽為載體,考查了分類計數原理、排列數與組合數公式等知識,屬于基礎題.10、D【解析】

設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.11、B【解析】

取中點,可確定;根據平面向量線性運算和數量積的運算法則可求得,利用可求得結果.【詳解】取中點,連接,,,即.,,,則.故選:.【點睛】本題考查平面向量數量積的求解問題,涉及到平面向量的線性運算,關鍵是能夠將所求向量進行拆解,進而利用平面向量數量積的運算性質進行求解.12、D【解析】

由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結合同角三角函數的基本關系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數的基本關系,考查了二倍角公式.本題的關鍵是由面積比求出角的正切值.二、填空題:本題共4小題,每小題5分,共20分。13、②【解析】

根據新定義,結合實數的性質即可判斷①②③,由定義求得比小的有理數個數,即可確定④.【詳解】對于①,由定義可知,當為有理數時;當為無理數時,則值域為,所以①錯誤;對于②,因為有理數的相反數還是有理數,無理數的相反數還是無理數,所以滿足,所以②正確;對于③,因為,當為無理數時,可以是有理數,也可以是無理數,所以③錯誤;對于④,由定義可知,所以④錯誤;綜上可知,正確的為②.故答案為:②.【點睛】本題考查了新定義函數的綜合應用,正確理解題意是解決此類問題的關鍵,屬于中檔題.14、【解析】

作出圖像,設點,根據已知可得,,且,可解出,計算即得.【詳解】如圖,設,圓心坐標為,可得,,,,,解得,,即的長是.故答案為:【點睛】本題考查直線與圓的位置關系,以及求平面兩點間的距離,運用了數形結合的思想.15、【解析】

根據向量關系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數量積的取值范圍,涉及基本運算,關鍵在于恰當地對向量進行轉換,便于計算解題.16、【解析】

利用余弦定理計算,然后根據平方關系以及三角形面積公式,可得結果.【詳解】設由題可知:由,,,所以化簡可得:則或,即或由,所以所以故答案為:【點睛】本題主要考查余弦定理解三角形,仔細觀察,細心計算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

方案一:(1)根據等差數列的通項公式及前n項和公式列方程組,求出和,從而寫出數列的通項公式;(2)由第(1)題的結論,寫出數列的通項,采用分組求和、等比求和公式以及裂項相消法,求出數列的前項和.其余兩個方案與方案一的解法相近似.【詳解】解:方案一:(1)∵數列都是等差數列,且,,解得,綜上(2)由(1)得:方案二:(1)∵數列都是等差數列,且,解得,.綜上,(2)同方案一方案三:(1)∵數列都是等差數列,且.,解得,,.綜上,(2)同方案一【點睛】本題考查了等差數列的通項公式、前n項和公式的應用,考查了分組求和、等比求和及裂項相消法求數列的前n項和,屬于中檔題.18、(1);(2)【解析】

(1)直接利用轉換關系的應用,把參數方程極坐標方程和直角坐標方程之間進行轉換.(2)利用(1)的結論,進一步利用一元二次方程根和系數的關系式的應用求出結果.【詳解】解:(1)直線的參數方程為(為參數),轉換為直角坐標方程為.曲線的極坐標方程為.轉換為,轉換為直角坐標方程為.(2)直線的參數方程為(為參數),轉換為標準式為(為參數),代入圓的直角坐標方程整理得,所以,..【點睛】本題屬于基礎本題考查的知識要點:主要考查極坐標,參數方程與普通方程互化,及求三角形面積.需要熟記極坐標系與參數方程的公式,及與解析幾何相關的直線與曲線位置關系的一些解題思路.19、(Ⅰ)函數的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ)證明見解析;(Ⅲ).【解析】

(Ⅰ)利用二次求導可得,所以在上為增函數,進而可得函數的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ)利用導數可得在區(qū)間上存在唯一零點,所以函數在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構造函數,利用導數可得的單調性,即可得到的最小值為,再次構造函數(a),,利用導數得其單調區(qū)間,進而求得最大值.【詳解】(Ⅰ)當時,,則,所以,又因為,所以在上為增函數,因為,所以當時,,為增函數,當時,,為減函數,即函數的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ),則令,則(1),,所以在區(qū)間上存在唯一零點,設零點為,則,且,當時,,當,,,所以函數在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因為對于恒成立,即對于恒成立,不妨令,因為,,所以的解為,則當時,,為增函數,當時,,為減函數,所以的最小值為,則,不妨令(a),,則(a),解得,所以當時,(a),(a)為增函數,當時,(a),(a)為減函數,所以(a)的最大值為,則的最大值為.【點睛】本題考查利用導數研究函數的單調性和最值,以及函數不等式恒成立問題的解法,意在考查學生等價轉化思想和數學運算能力,屬于較難題.20、(1)的值為或.(2)【解析】

(1)分類討論,當時,線段與拋物線沒有公共點,設點在拋物線準線上的射影為,當三點共線時,能取得最小值,利用拋物線的焦半徑公式即可求解;當時,線段與拋物線有公共點,利用兩點間的距離公式即可求解.(2)由題意可得軸且設,則,代入拋物線方程求出,再利用三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論