版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),則關(guān)于的方程所表示的曲線是()A.長(zhǎng)軸在軸上的橢圓 B.長(zhǎng)軸在軸上的橢圓C.實(shí)軸在軸上的雙曲線 D.實(shí)軸在軸上的雙曲線2.已知全集,集合,則()A. B. C. D.3.已知在平面直角坐標(biāo)系中,圓:與圓:交于,兩點(diǎn),若,則實(shí)數(shù)的值為()A.1 B.2 C.-1 D.-24.正三棱錐底面邊長(zhǎng)為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.5.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.6.若的展開式中二項(xiàng)式系數(shù)和為256,則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為()A.85 B.84 C.57 D.567.已知函數(shù)滿足=1,則等于()A.- B. C.- D.8.已知函數(shù),則的值等于()A.2018 B.1009 C.1010 D.20209.設(shè)、是兩條不同的直線,、是兩個(gè)不同的平面,則的一個(gè)充分條件是()A.且 B.且 C.且 D.且10.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.11.一個(gè)封閉的棱長(zhǎng)為2的正方體容器,當(dāng)水平放置時(shí),如圖,水面的高度正好為棱長(zhǎng)的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.12.復(fù)數(shù)的共軛復(fù)數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如圖的算法,輸出的結(jié)果是_________.14.已知雙曲線的左、右焦點(diǎn)和點(diǎn)為某個(gè)等腰三角形的三個(gè)頂點(diǎn),則雙曲線C的離心率為________.15.如圖,的外接圓半徑為,為邊上一點(diǎn),且,,則的面積為______.16.請(qǐng)列舉用0,1,2,3這4個(gè)數(shù)字所組成的無重復(fù)數(shù)字且比210大的所有三位奇數(shù):___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點(diǎn)分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點(diǎn),且過的直線與橢圓交于兩點(diǎn),設(shè)且.(1)求點(diǎn)的坐標(biāo);(2)求的取值范圍.18.(12分)為響應(yīng)“堅(jiān)定文化自信,建設(shè)文化強(qiáng)國(guó)”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺(tái)計(jì)劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機(jī)抽取了120名學(xué)生做調(diào)查,統(tǒng)計(jì)結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系?男生女生總計(jì)喜歡閱讀中國(guó)古典文學(xué)不喜歡閱讀中國(guó)古典文學(xué)總計(jì)(2)為做好文化建設(shè)引領(lǐng),實(shí)驗(yàn)組把該校作為試點(diǎn),和該校的學(xué)生進(jìn)行中國(guó)古典文學(xué)閱讀交流.實(shí)驗(yàn)人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個(gè)代表中有2名男生代表和2名女生代表喜歡中國(guó)古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會(huì),記為參加會(huì)議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.19.(12分)如圖在棱錐中,為矩形,面,(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請(qǐng)說明理由;(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.20.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點(diǎn),分別是,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.21.(12分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值22.(10分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)條件,方程.即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實(shí)軸在y軸上的雙曲線,
故選C.【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵.2、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補(bǔ)集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算問題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.3、D【解析】
由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個(gè)圓心的連線上,從而可求.【詳解】因?yàn)椋設(shè)在AB的中垂線上,即O在兩個(gè)圓心的連線上,,,三點(diǎn)共線,所以,得,故選D.【點(diǎn)睛】本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.4、D【解析】
由側(cè)棱與底面所成角及底面邊長(zhǎng)求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長(zhǎng)為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點(diǎn)睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.5、A【解析】
令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€(gè)未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.6、A【解析】
先求,再確定展開式中的有理項(xiàng),最后求系數(shù)之和.【詳解】解:的展開式中二項(xiàng)式系數(shù)和為256故,要求展開式中的有理項(xiàng),則則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為:故選:A【點(diǎn)睛】考查二項(xiàng)式的二項(xiàng)式系數(shù)及展開式中有理項(xiàng)系數(shù)的確定,基礎(chǔ)題.7、C【解析】
設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進(jìn)而可得.【詳解】解:設(shè)的最小正周期為,因?yàn)?,所以,所以,所以,又,所以?dāng)時(shí),,,因?yàn)?,整理得,因?yàn)?,,,則所以.故選:C.【點(diǎn)睛】本題考查三角形函數(shù)的周期性和對(duì)稱性,考查學(xué)生分析能力和計(jì)算能力,是一道難度較大的題目.8、C【解析】
首先,根據(jù)二倍角公式和輔助角公式化簡(jiǎn)函數(shù)解析式,根據(jù)所求函數(shù)的周期性,得到其周期為4,然后借助于三角函數(shù)的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點(diǎn)睛】本題重點(diǎn)考查了三角函數(shù)的圖象與性質(zhì)、三角恒等變換等知識(shí),掌握輔助角公式化簡(jiǎn)函數(shù)解析式是解題的關(guān)鍵,屬于中檔題.9、B【解析】由且可得,故選B.10、D【解析】
確定點(diǎn)為外心,代入化簡(jiǎn)得到,,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)?,②?lián)立方程①②可得,,,因?yàn)椋?,即.故選:【點(diǎn)睛】本題考查了向量模長(zhǎng)的計(jì)算,意在考查學(xué)生的計(jì)算能力.11、B【解析】
根據(jù)已知可知水面的最大高度為正方體面對(duì)角線長(zhǎng)的一半,由此得到結(jié)論.【詳解】正方體的面對(duì)角線長(zhǎng)為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對(duì)角線長(zhǎng)的一半,即最大水面高度為,故選B.【點(diǎn)睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.12、D【解析】
直接相乘,得,由共軛復(fù)數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復(fù)數(shù)為.故選:D【點(diǎn)睛】熟悉復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、55【解析】
根據(jù)該For語句的功能,可得,可得結(jié)果【詳解】根據(jù)該For語句的功能,可得則故答案為:55【點(diǎn)睛】本題考查For語句的功能,屬基礎(chǔ)題.14、【解析】
由等腰三角形及雙曲線的對(duì)稱性可知或,進(jìn)而利用兩點(diǎn)間距離公式求解即可.【詳解】由題設(shè)雙曲線的左、右焦點(diǎn)分別為,,因?yàn)樽?、右焦點(diǎn)和點(diǎn)為某個(gè)等腰三角形的三個(gè)頂點(diǎn),當(dāng)時(shí),,由可得,等式兩邊同除可得,解得(舍);當(dāng)時(shí),,由可得,等式兩邊同除可得,解得,故答案為:【點(diǎn)睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應(yīng)用,考查分類討論思想.15、【解析】
先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進(jìn)一步得到B=C,最后利用面積公式計(jì)算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點(diǎn)睛】本題考查正弦定理解三角形,考查學(xué)生的基本計(jì)算能力,要靈活運(yùn)用正弦定理公式及三角形面積公式,本題屬于中檔題.16、231,321,301,1【解析】
分個(gè)位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個(gè)數(shù)字所組成的無重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當(dāng)個(gè)位數(shù)字是1時(shí),數(shù)字可以是231,321,301;(2)當(dāng)個(gè)位數(shù)字是3時(shí)數(shù)字可以是1.故答案為:231,321,301,1【點(diǎn)睛】本題考查了分類計(jì)數(shù)法的應(yīng)用,考查了學(xué)生分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)設(shè)出的坐標(biāo),代入,結(jié)合在拋物線上,求得兩點(diǎn)的橫坐標(biāo),進(jìn)而求得點(diǎn)的坐標(biāo).(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,結(jié)合,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得的取值范圍.【詳解】(1)可知,設(shè)則,又,所以解得所以.(2)據(jù)題意,直線的斜率必不為所以設(shè)將直線方程代入橢圓的方程中,整理得,設(shè)則①②因?yàn)樗郧覍ⅱ偈狡椒匠寓谑降盟杂纸獾糜?,所以令,則所以【點(diǎn)睛】本小題主要考查直線和拋物線的位置關(guān)系,考查直線和橢圓的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查向量模的坐標(biāo)運(yùn)算,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于難題.18、(1)見解析,沒有(2)見解析,【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計(jì)算出的值,由此判斷出沒有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計(jì)算公式,計(jì)算出分布列并求得數(shù)學(xué)期望.【詳解】(1)男生女生總計(jì)喜歡閱讀中國(guó)古典文學(xué)423072不喜歡閱讀中國(guó)古典文學(xué)301848總計(jì)7248120所以,沒有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系.(2)設(shè)參加座談會(huì)的男生中喜歡中國(guó)古典文學(xué)的人數(shù)為,女生中喜歡古典文學(xué)的人數(shù)為,則.且;;.所以的分布列為則.【點(diǎn)睛】本小題主要考查列聯(lián)表獨(dú)立性檢驗(yàn),考查隨機(jī)變量分布列和數(shù)學(xué)期望的求法,考查數(shù)據(jù)處理能力,屬于中檔題.19、(1)見解析;(2)【解析】
(1)要證明PC⊥面ADE,由已知可得AD⊥PC,只需滿足即可,從而得到點(diǎn)E為中點(diǎn);(2)求出面ADE的法向量,面PAE的法向量,利用空間向量的數(shù)量積,求解二面角P﹣AE﹣D的余弦值.【詳解】(1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由,即存在點(diǎn)E為PC中點(diǎn).法二:建立如圖所示的空間直角坐標(biāo)系D-XYZ,由題意知PD=CD=1,,設(shè),,,由,得,即存在點(diǎn)E為PC中點(diǎn).(2)由(1)知,,,,,,設(shè)面ADE的法向量為,面PAE的法向量為由的法向量為得,得,同理求得所以,故所求二面角P-AE-D的余弦值為.【點(diǎn)睛】本題考查二面角的平面角的求法,考查直線與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.20、(1)證明見解析;(2).【解析】
(1)構(gòu)造直線所在平面,由面面平行推證線面平行;(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求出兩個(gè)平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過點(diǎn)交于點(diǎn),連接,如下圖所示:因?yàn)槠矫嫫矫?,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版美容院美容院美容師培訓(xùn)教材采購(gòu)合同4篇
- 二零二五年度抹灰工程質(zhì)量控制及驗(yàn)收合同4篇
- 二零二五年度高端門業(yè)定制合同示范文本4篇
- 二零二五年度面包烘焙產(chǎn)品品牌授權(quán)合同4篇
- 2025年度餐飲企業(yè)加盟店品牌使用與市場(chǎng)推廣合同3篇
- 2025年度新型美容師實(shí)習(xí)生技能培訓(xùn)聘用合同4篇
- 二零二五年度車輛抵押借款合同(含還款方式變更)4篇
- 2025年度校園配送服務(wù)食品安全快速檢測(cè)培訓(xùn)課程開發(fā)合同3篇
- 2025版醫(yī)院與醫(yī)療機(jī)構(gòu)醫(yī)療培訓(xùn)合作合同3篇
- 2025年度個(gè)人戶外運(yùn)動(dòng)裝備銷售合同4篇
- TD/T 1060-2021 自然資源分等定級(jí)通則(正式版)
- 人教版二年級(jí)下冊(cè)口算題大全1000道可打印帶答案
- 《創(chuàng)傷失血性休克中國(guó)急診專家共識(shí)(2023)》解讀
- 倉庫智能化建設(shè)方案
- 海外市場(chǎng)開拓計(jì)劃
- 2024年度國(guó)家社會(huì)科學(xué)基金項(xiàng)目課題指南
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
- 紅色歷史研學(xué)旅行課程設(shè)計(jì)
- 如何避免護(hù)理患者投訴
評(píng)論
0/150
提交評(píng)論