




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-32.已知雙曲線(,)的左、右焦點分別為,以(為坐標原點)為直徑的圓交雙曲線于兩點,若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.3.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.4.設命題:,,則為A., B.,C., D.,5.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知集合,則集合()A. B. C. D.7.已知為虛數(shù)單位,復數(shù),則其共軛復數(shù)()A. B. C. D.8.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.69.記為等差數(shù)列的前項和.若,,則()A.5 B.3 C.-12 D.-1310.已知橢圓內(nèi)有一條以點為中點的弦,則直線的方程為()A. B.C. D.11.函數(shù)的圖象與軸交點的橫坐標構(gòu)成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位12.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____14.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.15.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.16.已知雙曲線的左右焦點分別為,過的直線與雙曲線左支交于兩點,,的內(nèi)切圓的圓心的縱坐標為,則雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.18.(12分)設函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當x>1時,g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.20.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.21.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大小;(2)在棱上確定一點,使二面角的平面角的余弦值為.22.(10分)已知關于的不等式有解.(1)求實數(shù)的最大值;(2)若,,均為正實數(shù),且滿足.證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設,,設:,聯(lián)立方程得到,計算得到答案.【詳解】設,,故.易知直線斜率不為,設:,聯(lián)立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數(shù)量積,設直線為可以簡化運算,是解題的關鍵.2、D【解析】
連接,可得,在中,由余弦定理得,結(jié)合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【點睛】本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.3、A【解析】
根據(jù)向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數(shù)量積的運算,向量數(shù)量積的性質(zhì),屬于中檔題.4、D【解析】
直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.5、B【解析】
利用充分必要條件的定義可判斷兩個條件之間的關系.【詳解】若,則,故或,當時,直線,直線,此時兩條直線平行;當時,直線,直線,此時兩條直線平行.所以當時,推不出,故“”是“”的不充分條件,當時,可以推出,故“”是“”的必要條件,故選:B.【點睛】本題考查兩條直線的位置關系以及必要不充分條件的判斷,前者應根據(jù)系數(shù)關系來考慮,后者依據(jù)兩個條件之間的推出關系,本題屬于中檔題.6、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.7、B【解析】
先根據(jù)復數(shù)的乘法計算出,然后再根據(jù)共軛復數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復數(shù).故選:B.【點睛】本題考查復數(shù)的乘法運算以及共軛復數(shù)的概念,難度較易.8、C【解析】
根據(jù)列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運算,考查向量模的求法,屬于基礎題.9、B【解析】
由題得,,解得,,計算可得.【詳解】,,,,解得,,.故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學生運算求解能力.10、C【解析】
設,,則,,相減得到,解得答案.【詳解】設,,設直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內(nèi)點差法求直線方程,意在考查學生的計算能力和應用能力.11、A【解析】依題意有的周期為.而,故應左移.12、B【解析】
設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
化簡得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點睛】本題主要考查三角函數(shù)的性質(zhì)的應用,屬于基礎題.14、【解析】
由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視圖求體積、棱長,關鍵是由三視圖還原原幾何體,是中檔題.15、【解析】
基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).由此能求出三人都收到禮物的概率.【詳解】三個小朋友之間準備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).則三人都收到禮物的概率.故答案為:.【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎題.16、2【解析】
由題意畫出圖形,設內(nèi)切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質(zhì)結(jié)臺雙曲線的定義,求得的內(nèi)切圓的圓心的縱坐標,結(jié)合已知列式,即可求得雙曲線的離心率.【詳解】設內(nèi)切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯(lián)立①②解得:,又因圓心的縱坐標為,.故答案為:【點睛】本題考查雙曲線的幾何性質(zhì),考查數(shù)形結(jié)合思想與運算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值;(3)見解析.【解析】
(1)切點既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點的導數(shù)再列一方程,解方程組即可;(2)先對求導數(shù),根據(jù)導數(shù)判斷和求解即可.(3)把證明轉(zhuǎn)化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數(shù)的定義域為由已知得,則,解得.(2)由題意得,則.當時,,所以單調(diào)遞減,當時,,所以單調(diào)遞增,所以,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當時,單調(diào)遞增,當時,單調(diào)遞減,所以的極大值為,即由(2)知,時,,且的最小值點與的最大值點不同,所以,即.所以,.【點睛】知識方面,考查建立方程組求未知數(shù),利用導數(shù)求函數(shù)的單調(diào)區(qū)間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和解決問題的能力以及運算求解能力;試題難度大.18、(Ⅰ)當時,<0,單調(diào)遞減;當時,>0,單調(diào)遞增;(Ⅱ)詳見解析;(Ⅲ).【解析】試題分析:本題考查導數(shù)的計算、利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學生的分析問題、解決問題的能力和計算能力.第(Ⅰ)問,對求導,再對a進行討論,判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論,第(Ⅲ)問,構(gòu)造函數(shù)=(),利用導數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:(Ⅰ)<0,在內(nèi)單調(diào)遞減.由=0有.當時,<0,單調(diào)遞減;當時,>0,單調(diào)遞增.(Ⅱ)令=,則=.當時,>0,所以,從而=>0.(Ⅲ)由(Ⅱ),當時,>0.當,時,=.故當>在區(qū)間內(nèi)恒成立時,必有.當時,>1.由(Ⅰ)有,而,所以此時>在區(qū)間內(nèi)不恒成立.當時,令=().當時,=.因此,在區(qū)間單調(diào)遞增.又因為=0,所以當時,=>0,即>恒成立.綜上,.【考點】導數(shù)的計算,利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題【名師點睛】本題考查導數(shù)的計算,利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學生的分析問題、解決問題的能力和計算能力.求函數(shù)的單調(diào)性,基本方法是求,解方程,再通過的正負確定的單調(diào)性;要證明不等式,一般證明的最小值大于0,為此要研究函數(shù)的單調(diào)性.本題中注意由于函數(shù)的極小值沒法確定,因此要利用已經(jīng)求得的結(jié)論縮小參數(shù)取值范圍.比較新穎,學生不易想到,有一定的難度.19、(1)(2)【解析】
(1)化簡得到,分類解不等式得到答案.(2)的最大值,,利用均值不等式計算得到答案.【詳解】(1)因為,故或或解得或,故不等式的解集為.(2)畫出函數(shù)圖像,根據(jù)圖像可知的最大值.因為,所以,當且僅當時,等號成立,故的最小值是3.【點睛】本題考查了解不等式,均值不等式求最值,意在考查學生的計算能力和轉(zhuǎn)化能力.20、(1);(2)或.【解析】
(1)聯(lián)立直線方程與雙曲線方程,消去,得到關于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設,由(1)可得關系,再由直線l過點,可得,進而建立關于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關系、三角形面積計算,要熟練掌握根與系數(shù)關系解決相交弦問題,考查計算求解能力,屬于中檔題.21、(1)(2)【解析】試題分析:(1)因為AB⊥AC,A1B⊥平面ABC,所以以A為坐標原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標系,由AB=AC=A1B=2求出所要用到的點的坐標,求出棱AA1與BC上的兩個向量,由向量的夾角求棱AA1與BC所成的角的大小;
(2)設棱B1C1上的一點P,由向量共線得到P點的坐標,然后求出兩個平面PAB與平面ABA1的一個法向量,把二面角P-AB-A1的平面角的余弦值為,轉(zhuǎn)化為它們法向量所成角的余弦值,由此確定出P點的坐標.試題解析:解(1)如圖,以為原點建立空間直角坐標系,則,.,故與棱所成的角是.(2)為棱中點,設,則.設平面的法向量為,,則,故而平面的法向量是,則,解得,即為棱中點,其坐標為.點睛:本題主要考查線面垂直的判定與性質(zhì),以及利用空間向量求二面角.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具設計中的智慧家居應用考題試題及答案
- 膨化機崗位試題及答案
- 電動汽車電池安全技術的標準化研究試題及答案
- 濰坊月考高三試題及答案
- 新能源汽車的投資回報分析試題及答案
- 巖土工程施工技術試題及答案
- 燃氣測試試題及答案大全
- 探討音程的結(jié)構(gòu)與分類2025年樂理考試試題及答案
- 企業(yè)人力資源管理新策略
- 海底撈面試試題及答案
- 項目部管理人員通訊錄
- 1.5內(nèi)蒙古基本概況與主要文旅資源《地方導游基礎知識》教學課件
- 電音節(jié)策劃方案
- 貝恩杯案例分析大賽初賽題目
- 2023年江蘇省南京市中考語文默寫題復習(附答案解析)
- 全國各省市郵編對照表
- 行政區(qū)域代碼表Excel
- YS/T 837-2012濺射靶材-背板結(jié)合質(zhì)量超聲波檢驗方法
- 燒烤類菜單表格
- DB11∕T 583-2022 扣件式和碗扣式鋼管腳手架安全選用技術規(guī)程
- 酒水購銷合同范本(3篇)
評論
0/150
提交評論