圓與方程(知識點串講)(解析版)_第1頁
圓與方程(知識點串講)(解析版)_第2頁
圓與方程(知識點串講)(解析版)_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第五講圓與方程1.圓的定義及方程定義平面內(nèi)與定點的距離等于定長的點的集合(軌跡)標準方程(x-a)2+(y-b)2=r2(r>0)圓心(a,b),半徑r一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0)圓心eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2))),半徑eq\f(1,2)eq\r(D2+E2-4F)2.點與圓的位置關(guān)系點M(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系:(1)若M(x0,y0)在圓外,則(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圓上,則(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圓內(nèi),則(x0-a)2+(y0-b)2<r2.3.確定圓心的方法求圓的標準方程,其關(guān)鍵是確定圓心,確定圓心的主要方法有:(1)當題目條件中出現(xiàn)直線與圓相切時,可利用圓心在過切點且與切線垂直的直線上來確定圓心位置;(2)當題目條件中出現(xiàn)直線與圓相交,可考慮圓心在弦的垂直平分線上;(3)當題目條件出現(xiàn)兩圓相切時,可考慮切點與兩圓的圓心共線.4.求圓的方程的兩種方法(1)直接法:直接求出圓心坐標和半徑,寫出方程.(2)待定系數(shù)法:①若已知條件與圓心(a,b)和半徑r有關(guān),則設(shè)圓的標準方程,求出a,b,r的值;②選擇圓的一般方程,依據(jù)已知條件列出關(guān)于D,E,F(xiàn)的方程組,進而求出D,E,F(xiàn)的值.例1.(2022·山東威海調(diào)研)若x2+y2-4x+2y+5k=0表示圓,則實數(shù)k的取值范圍是()A.R B.(-∞,1)C.(-∞,1] D.[1,+∞)【答案】B[由方程x2+y2-4x+2y+5k=0可得(x-2)2+(y+1)2=5-5k,此方程表示圓,則5-5k>0,解得k<1.故實數(shù)k的取值范圍是(-∞,1).]例2.(2022·天津卷)在平面直角坐標系中,經(jīng)過三點(0,0),(1,1),(2,0)的圓的方程為____________.【答案】x2+y2-2x=0[方法一設(shè)圓的方程為x2+y2+Dx+Ey+F=0.∵圓經(jīng)過點(0,0),(1,1),(2,0),∴eq\b\lc\{\rc\(\a\vs4\al\co1(F=0,,2+D+E+F=0,,4+2D+F=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(D=-2,,E=0,,F=0.))∴圓的方程為x2+y2-2x=0.方法二畫出示意圖如圖所示,則△OAB為等腰直角三角形,故所求圓的圓心為(1,0),半徑為1,所以所求圓的方程為(x-1)2+y2=1,即x2+y2-2x=0.]練習(xí).(2022·黑龍江伊春月考)過點A(1,-1),B(-1,1),且圓心在x+y-2=0上的圓的方程是()A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4【答案】C[AB的中垂線方程為y=x,所以由y=x,x+y-2=0的交點得圓心(1,1),半徑為2,因此圓的方程是(x-1)2+(y-1)2=4.]5.與圓有關(guān)的最值問題的常見解法(1)形如μ=eq\f(y-b,x-a)形式的最值問題,可轉(zhuǎn)化為動直線斜率的最值問題.(2)形如t=ax+by形式的最值問題,可轉(zhuǎn)化為動直線截距的最值問題.(3)形如(x-a)2+(y-b)2形式的最值問題,可轉(zhuǎn)化為動點到定點的距離的平方的最值問題.例3.已知實數(shù)x,y滿足方程x2+y2-4x+1=0.(1)求eq\f(y,x)的最大值和最小值;(2)求y-x的最大值和最小值.解原方程可化為(x-2)2+y2=3,表示以(2,0)為圓心,eq\r(3)為半徑的圓.(1)eq\f(y,x)的幾何意義是圓上一點與原點連線的斜率,所以設(shè)eq\f(y,x)=k,即y=kx.當直線y=kx與圓相切時,斜率k取得最大值或最小值,此時eq\f(|2k-0|,\r(k2+1))=eq\r(3),解得k=±eq\r(3)(如圖1).所以eq\f(y,x)的最大值為eq\r(3),最小值為-eq\r(3).圖1圖2(2)y-x可看作是直線y=x+b在y軸上的截距,當直線y=x+b與圓相切時,縱截距b取得最大值或最小值,此時eq\f(|2-0+b|,\r(2))=eq\r(3),解得b=-2±eq\r(6)(如圖2).所以y-x的最大值為-2+eq\r(6),最小值為-2-eq\r(6).[變式探究]在本例條件下,求x2+y2的最大值和最小值.解x2+y2表示圓上的一點與原點距離的平方,由平面幾何知識知,在原點和圓心連線與圓的兩個交點處取得最大值和最小值(如圖).又圓心到原點的距離為eq\r(2-02+0-02)=2,所以x2+y2的最大值是(2+eq\r(3))2=7+4eq\r(3),x2+y2的最小值是(2-eq\r(3))2=7-4eq\r(3).練習(xí).已知圓C:(x-3)2+(y-4)2=1和兩點A(-m,0),B(m,0)(m>0).若圓C上存在點P,使得∠APB=90°,則m的最大值為()A.7 B.6C.5 D.4【答案】B[由(x-3)2+(y-4)2=1,知圓上點P(x0,y0)可化為eq\b\lc\{\rc\(\a\vs4\al\co1(x0=3+cosθ,,y0=4+sinθ.))∵∠APB=90°,即eq\o(AP,\s\up6(→))·eq\o(BP,\s\up6(→))=0,∴(x0+m)(x0-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論