版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年河北省邢臺(tái)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.
B.
C..
D.不能確定
2.
3.
4.A.A.
B.
C.
D.
5.
6.∫-11(3x2+sin5x)dx=()。A.-2B.-1C.1D.2
7.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
8.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
9.二次積分等于()A.A.
B.
C.
D.
10.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
11.
12.
13.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性
14.
15.
16.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
17.設(shè)f'(x)在點(diǎn)x0的某鄰域內(nèi)存在,且f(x0)為f(x)的極大值,則等于().A.A.2B.1C.0D.-2
18.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
19.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
20.曲線y=ex與其過原點(diǎn)的切線及y軸所圍面積為
A.
B.
C.
D.
二、填空題(20題)21.設(shè)y=ex/x,則dy=________。
22.
23.
24.
25.設(shè)f(x)=esinx,則=________。
26.微分方程y''+y=0的通解是______.
27.
28.
29.設(shè)f(x)=1+cos2x,則f'(1)=__________。
30.設(shè)區(qū)域D:x2+y2≤a2,x≥0,則
31.已知平面π:2x+y-3z+2=0,則過原點(diǎn)且與π垂直的直線方程為______.
32.
33.
34.設(shè)y=sin(2+x),則dy=.
35.
36.曲線y=x3—6x的拐點(diǎn)坐標(biāo)為________.
37.二元函數(shù)z=xy2+arcsiny2,則=______.
38.
39.
40.設(shè)y=x2+e2,則dy=________
三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
42.求微分方程的通解.
43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
44.
45.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
46.
47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
48.
49.
50.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
52.求曲線在點(diǎn)(1,3)處的切線方程.
53.
54.求微分方程y"-4y'+4y=e-2x的通解.
55.
56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
57.將f(x)=e-2X展開為x的冪級(jí)數(shù).
58.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
59.證明:
60.
四、解答題(10題)61.
62.
63.(本題滿分8分)
64.設(shè)f(x)=x-5,求f'(x)。
65.計(jì)算其中D是由y=x,x=0,y=1圍成的平面區(qū)域.
66.設(shè)y=x2ex,求y'。
67.求方程y''-2y'+5y=ex的通解.
68.將展開為x的冪級(jí)數(shù).
69.
70.求y=xlnx的極值與極值點(diǎn).五、高等數(shù)學(xué)(0題)71.要造一個(gè)容積為4dm2的無蓋長方體箱子,問長、寬、高各多少dm時(shí)用料最省?
六、解答題(0題)72.
參考答案
1.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯(cuò)誤是選C。如果畫個(gè)草圖,則可以避免這類錯(cuò)誤。
2.D
3.C解析:
4.B
5.A解析:
6.D
7.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知
可知應(yīng)選A。
8.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
9.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
10.A本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
可知應(yīng)選A.
11.C解析:
12.B
13.D
14.C
15.D
16.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
17.C本題考查的知識(shí)點(diǎn)為極值的必要條件;在一點(diǎn)導(dǎo)數(shù)的定義.
由于f(x0)為f(x)的極大值,且f'(x0)存在,由極值的必要條件可知f'(x0)=0.從而
可知應(yīng)選C.
18.B
19.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
20.A
21.
22.
23.
24.
25.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。
26.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根為r=±i,所以方程的通解為y=C1cosx+C2sinx.
27.
解析:
28.2xsinx2;本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
29.-2sin2
30.
解析:本題考查的知識(shí)點(diǎn)為二重積分的性質(zhì).
31.
解析:本題考查的知識(shí)點(diǎn)為直線方程和直線與平面的關(guān)系.
由于平面π與直線l垂直,則直線的方向向量s必定平行于平面的法向量n,因此可以取s=n=(2,1,-3).又知直線過原點(diǎn)-由直線的標(biāo)準(zhǔn)式方程可知為所求直線方程.
32.
33.
34.cos(2+x)dx
這類問題通常有兩種解法.
解法1
因此dy=cos(2+x)dx.
解法2利用微分運(yùn)算公式
dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.
35.
36.(0,0).
本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的-般步驟,只需
37.y2
;本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
只需將y,arcsiny2認(rèn)作為常數(shù),則
38.
39.3x2siny
40.(2x+e2)dx
41.由等價(jià)無窮小量的定義可知
42.
43.
列表:
說明
44.
45.
46.
47.
48.
49.由一階線性微分方程通解公式有
50.
51.函數(shù)的定義域?yàn)?/p>
注意
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.
則
54.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
55.
56.由二重積分物理意義知
57.
58.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
59.
60.
61.
62.
63.解法1
解法2
64.f'(x)=x'-5'=1。
65.
本題考查的知識(shí)點(diǎn)為二重積分運(yùn)算和選擇二次積分次序.
由于不能用初等函數(shù)形式表示,因此不能先對(duì)y積分,只能選取先對(duì)x積分后對(duì)y積分的次序.
通常都不能由初等函數(shù)形式表示,即不可積分,考生應(yīng)該記住這兩個(gè)常見的形式.
66.y'=(x2)'ex+x2(ex)'=2xex+x2ex=ex(x2+2x)。y'=(x2)'ex+x2(ex)'=2xex+x2ex=ex(x2+2x)。
67.
68.
;本題考查的知識(shí)點(diǎn)為將初等函數(shù)展開為x的冪級(jí)數(shù).
如果題目中沒有限定展開方法,一律要利用間接展開法.這要求考生記住幾個(gè)標(biāo)準(zhǔn)展開式:,ex,sinx,cosx,ln(1+x)對(duì)于x的冪級(jí)數(shù)展開式.
69.解
70.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版年薪制員工勞動(dòng)合同(智能機(jī)器人研發(fā))4篇
- 2025年度個(gè)人與公司租賃合同租賃物權(quán)屬變更及通知4篇
- 2025年度創(chuàng)業(yè)公司員工股權(quán)激勵(lì)與期權(quán)購買協(xié)議4篇
- 口述歷史在科技史研究中的應(yīng)用探索-深度研究
- 二零二五版木屋雨水收集利用系統(tǒng)安裝合同4篇
- 二零二五年度農(nóng)場(chǎng)租賃合同農(nóng)業(yè)人才引進(jìn)與培養(yǎng)協(xié)議4篇
- 2025年度智能電梯安裝與維保一體化服務(wù)合同范本3篇
- 二零二五年度國際物流代理報(bào)關(guān)委托合同樣本(含清關(guān)手續(xù))4篇
- 二零二五年度電商平臺(tái)增值服務(wù)代理合同4篇
- 二零二五年度木門行業(yè)綠色生產(chǎn)標(biāo)準(zhǔn)合同3篇
- 華為HCIA-Storage H13-629考試練習(xí)題
- Q∕GDW 516-2010 500kV~1000kV 輸電線路劣化懸式絕緣子檢測(cè)規(guī)程
- 遼寧省撫順五十中學(xué)2024屆中考化學(xué)全真模擬試卷含解析
- 2024年湖南汽車工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫及答案解析
- 家長心理健康教育知識(shí)講座
- GB/T 292-2023滾動(dòng)軸承角接觸球軸承外形尺寸
- 軍人結(jié)婚函調(diào)報(bào)告表
- 民用無人駕駛航空器實(shí)名制登記管理規(guī)定
- 北京地鐵6號(hào)線
- 航空油料計(jì)量統(tǒng)計(jì)員(初級(jí))理論考試復(fù)習(xí)題庫大全-上(單選題匯總)
評(píng)論
0/150
提交評(píng)論