版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
二項分布的Piossion逼近隨機過程一.二項分布
二項分布即重復n次獨立的伯努利實驗。在每次試驗中只有兩種可能的結果,而且兩種結果發(fā)生與否互相對立,并且相互獨立,與其它各次試驗結果無關,事件發(fā)生與否的概率在每一次獨立試驗中都保持不變,則這一系列試驗總稱為n重伯努利實驗,當試驗次數(shù)為1時,二項分布就是伯努利分布。
在概率論和統(tǒng)計學中,二項分布是n個獨立的是/非二項分布與生活息息相關試驗中成功的次數(shù)的離散概率分布,其中每次試驗的成功概率為p。這樣的單次成功/失敗試驗又稱為伯努利試驗。實際上,當n=1時,二項分布就是伯努利分布,二項分布是顯著性差異的二項試驗的基礎。二.泊松分布
泊松分布是一種統(tǒng)計與概率學里常見到的離散概率分布,由法國數(shù)學家西莫恩·德尼·泊松(Siméon-DenisPoisson)在1838年時發(fā)表。概率論中常用的一種離散型概率分布。若隨機變量X只取非負整數(shù)值,取k值的概率為(k=0,1,2,…),則隨機變量X的分布稱為泊松分布,記作P(λ)。這個分布是S.-D.泊松研究二項分布的漸近公式是時提出來的。泊松分布P(λ)中只有一個參數(shù)λ,它既是泊松分布的均值,也是泊松分布的方差。在實際事例中,當一個隨機事件,以固定的平均瞬時速率λ(或稱密度)隨機且獨立地出現(xiàn)時,那么這個事件在單位時間(面積或體積)內出現(xiàn)的次數(shù)或個數(shù)就近似地服從泊松分布。因此泊松分布在管理科學,運籌學以及自然科學的某些問題中都占有重要的地位。三.泊松分布與二項分布當二項分布的n很大而p很小時,泊松分布可作為二項分布的近似,其中λ為np。通常當n≧10,p≦0.1時,就可以用泊松公式近似得計算。四.二項分布的Piossion逼近在n很大,p很小,而λ=np大小適中時,有b(k;n,p)=···········用Piosson逼近給出b(k;100,0.01),b(k;100,0.01)(k=0,1,2,…,2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 4 Then and now PartB (說課稿)-2023-2024學年人教PEP版英語六年級下冊
- 2025年幼兒園教師個人工作計劃表
- 2025年行政人事工作計劃范例
- 2025年幼兒園大班工作計劃材料
- 2025年總務處工作計劃范文
- Unit1 lesson 1 Me and my body說課稿2024-2025學年冀教版(2024)初中英語七年級上冊
- 2025年科室護理的工作計劃范文
- Unit2 She's got an orange sweater(說課稿)-2023-2024學年外研版(三起)三年級下冊
- 2025心理健康教育工作計劃模板
- 2025年幼兒園食堂工作計劃例文
- 2024-2025學年北京房山區(qū)初三(上)期末英語試卷
- 2024年三年級英語教學工作總結(修改)
- 咖啡廳店面轉讓協(xié)議書
- 期末(試題)-2024-2025學年人教PEP版英語六年級上冊
- 鮮奶購銷合同模板
- 申論公務員考試試題與參考答案(2024年)
- DB4101T 9.1-2023 反恐怖防范管理規(guī)范 第1部分:通則
- 正面管教 讀書分享(課堂PPT)
- 教練技術CP理論PPT課件
- 產(chǎn)品生命周期曲線(高清)
- 機械工程學報標準格式
評論
0/150
提交評論