




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
畢業(yè)設(shè)計(jì)(論文)專業(yè)港口航道與海岸工程班級學(xué)生指導(dǎo)教師年優(yōu)化自動化集裝箱終端來提高生產(chǎn)力伊沃·薩能博士(首席顧問),德瓦爾(高級顧問)發(fā)表,荷蘭船只。我們不僅要從實(shí)際出發(fā),也要客觀的評價我們的仿真模型。為了實(shí)現(xiàn)它,我們以一個已有的完全自動化的系統(tǒng)設(shè)備為基礎(chǔ),再增加最新在本文中,我們從1990年代已建成的,一個虛擬存在的雙軌道式門機(jī)和自重機(jī)虛擬的中轉(zhuǎn)站(支腿移動的平臺是立體交叉道)。港區(qū)由35個堆場和兩臺0萬標(biāo)準(zhǔn)箱的吞吐量(標(biāo)準(zhǔn)箱不均衡系數(shù)1.65);第一步改進(jìn):用軌道式集裝箱龍門吊代替輪胎式集裝箱龍門吊第一步是用軌道式集裝箱龍門吊代替輪胎式集裝箱龍門吊,還包含了幾個相這里不需要用兩套門機(jī)軌道來使一個一大一小的碼頭起重機(jī)在上面運(yùn)行;兩轉(zhuǎn)站分配任務(wù)的靈活性的不利因素是由于有更多更快的碼頭起重機(jī)綜合作用的面的影響:服務(wù)時間超過10分鐘,這就意味著卡車不得不在軌道式起重機(jī)轉(zhuǎn)讓在這一步,我們還把最大堆碼高度從四層增加到五層。該軌道式起重機(jī)的布 臺軌道式起重機(jī)是能夠處理更大的數(shù)量的,因?yàn)樗鼈兊倪\(yùn)行速度變快了(4米/秒,而不是3.5米/秒),而且配備了更多的起重機(jī)(82臺,而不是70臺)。著,年吞吐能力可以達(dá)到42標(biāo)箱/小時。注意:我們考慮的是線性增加吞吐量和高峰容量。但是,這些數(shù)據(jù)也依賴于其他因素(如靠泊能力),但在這項(xiàng)研究中我們忽略了這些因素。與多數(shù)的自動導(dǎo)引車系統(tǒng)性能下降1%相比,對碼頭起重機(jī)性能的影響是微對于陸側(cè)來說,表現(xiàn)出了更大的影響。盡管軌道式起重可以處理增加的貨運(yùn)卡車在港區(qū)裝載上一個集裝箱需要等待額外的2分鐘(如圖5所示)。RMG)和軌道式起重機(jī)陸上作業(yè)(LSRMG)。雖然它們都致力于相應(yīng)一側(cè)的生第三步:用可升降的自動導(dǎo)向車代替自動導(dǎo)向車在堆場中,普通的自動導(dǎo)向車需要一個抖動來與軌道式起重機(jī)起吊貨物進(jìn)替普通的導(dǎo)向車后,那個抖動可以在這個過程中消除??缮档淖詣訉?dǎo)向車以定位那個平臺并搬運(yùn)集裝箱。—型號和10年可升降的自動導(dǎo)向車和軌道式龍門吊之間的轉(zhuǎn)運(yùn)是無關(guān)聯(lián)的,這就減少了兩??缮档淖詣訉?dǎo)向車需要在集裝箱的提升或者卸方貨物的平臺前作出額外的種負(fù)面的影響。對于好些運(yùn)輸工具來說,每臺橋吊的性能提高了(3–3.5)標(biāo)箱/小時。減少右列可升降的自動導(dǎo)向車圖中顯示在操作的時間上略有增加(因?yàn)椴僮鬟^程有0.3分鐘(20秒)。現(xiàn)在可升降的自動導(dǎo)向車靠近碼頭起重機(jī)的速度一般會快步驟:使用最先進(jìn)的可升降的自動導(dǎo)向車新一代的可升降的自動導(dǎo)向車能夠更快地進(jìn)行直線運(yùn)動,曲線運(yùn)動和減速運(yùn)生產(chǎn)率也得到顯著的增加:增加了(4-5)標(biāo)箱/小時,如圖10所示。碼頭起重機(jī)生產(chǎn)率的提高很大程度上是減少可升降的自動導(dǎo)向車對每個集裝:平均行駛速度從公里小時增加至公里小時。步驟:更多的運(yùn)行機(jī)會的集裝箱,碼頭起重機(jī)需要有雙升的升降機(jī)。在第4步以后,在堆棧中的模塊,會有19%的空閑時間。為了利用這個夠被提起。正因?yàn)槿绱?,給定每個標(biāo)準(zhǔn)箱的不均衡碼頭起重機(jī)每個周期(每次移動)可以處理更多的集裝箱。假如集裝箱的供裝箱給轉(zhuǎn)運(yùn)貨架(從它們身上吊取集裝箱)。如圖13所示,每個堆疊模塊每小時步驟:高效的碼頭起重機(jī)減少,因此,為下一代的可升降的自動導(dǎo)向車服務(wù)是遲早的事。步步驟:所有的調(diào)整相結(jié)合最后一步是開始場景與在前面所述的所有調(diào)整的一個對比。我們將可以看到它對性能水平的整體影響。在有5輛自動導(dǎo)向車的試驗(yàn)中,碼頭起重機(jī)的作業(yè)效說過,港岸起重機(jī)的生產(chǎn)力需要上升到(40—42)標(biāo)箱/小增加的碼頭起重機(jī)的效率僅可能適用于更高效的可升降的自動導(dǎo)向車和軌道式起重機(jī)。圖16顯示在最后一個場景中,可升降的自動導(dǎo)向車完成一個集裝箱自動導(dǎo)向車需要11分鐘。港區(qū)的需求增加時,軌道式起重機(jī)在每個堆疊模塊中移動的狀態(tài)在圖表中已經(jīng)顯示了出來。在第6步中,兩臺軌道式起重機(jī)在每個堆疊模塊中每個小時要承1.7個門道標(biāo)準(zhǔn)箱,大約超過了原始場景的50%。18所示。這并不是因?yàn)樾枰?,軌道式起重自動化終端的繁榮前景提供了一個堅(jiān)實(shí)的基礎(chǔ)。集中在傳統(tǒng)和自動化終端的研發(fā)上開展了許多大型仿真研究。他已經(jīng)成為了TBA旗下合作團(tuán)1996年創(chuàng)立了TBA?,F(xiàn)在負(fù)責(zé)監(jiān)督所有此行的項(xiàng)目,任積極參與終端的設(shè)計(jì)和優(yōu)化。TBA公司是一家在國際上領(lǐng)先的咨詢和軟件供應(yīng)商。其產(chǎn)品和服務(wù)主要集中在碼頭和集裝箱的終端設(shè)計(jì)和優(yōu)化。迄今TBA的客戶包括世界范圍內(nèi)的主要碼頭運(yùn)營商,包括許多本地運(yùn)營備和終端的模型與專門的環(huán)境公司相聯(lián)合。電話:+31(0)153805775電子郵件:info@tba.nldcontainerterminalstoDr.YvoSaanen,PrincipleConsultant,&ArjendeWaal,SeniorConsultant,TBA,TheNetherlandsAbstractThenextgenerationofrobotizedterminalswillbenefitfromthelatestsolutionsandtechnology.Whatarethesesolutionsthatwillbeefuptheproductivityoftheseterminals?Inasimulationsupportedanalysis,thesmall,butallfeasiblestepsarecomparedontheirimpacttoshipproductivity.Theanalysisshowsthatwiththerightmeasures,afullyrobotizedterminalcanliveuptotoday‘srequirementsfromshippinglinestoturnaroundeventhebiggestvesselsinashortperiodoftime.IntroductionWhatmakesthemythaboutnon-performingfullyautomated(robotizedisthebetterword)sostrong?Howcanitbethatinthesimulatedworld,theplanned–andassuchtobebuilt–automatedterminalsperformwell(above35gmphunderpeakcircumstances),andnotinreallife?Thisquestionwehaveaskedourselves,alsotocriticallyreviewoursimulationmodels.Inordertodoso,westartedfromoneofthecurrentstate-oftheartfullyautomatedfacilities,andaddedlatestimprovementstothemodeltoseewhetherwecouldincreasetheperformancetolevelsthatwedonotexperienceinpractice(yet).WeusedTBA‘sownprovencontainerterminalsimulationsuiteTimeSquaretoquantifytheeffectsofeachadjustmentindividually.Inthisarticlewedescribethisstep-wiseimprovementapproachfromanimaginaryexistingterminalwithDualRMGsandAGVs,aswouldhavebeenTwin-RMGsandLift-AGVsweshowtheeffectonproductivityofthevariousinvolvedequipmenttypes.Startingscenario:aYear2000automatedterminalOurstartingterminalisafictitiousterminalwith16doubletrolleyquaycranes(backreachinterchange,withplatformbetweenthelegs)ona1,500mquay.tsofstackmoduleswithdualcrossoverornestedRMGsCross-overRMGsarestackingcranesthatcanpasseachother(oneissmallerandcanpassthelargeroneunderneath).Becauseofthepassingability,bothRMGsareabletoserveboththewatersideandthelandsidetransportisdonebylift-onlift-off(LOLO)AutomatedGuidedVehicles(AGVs),whicharepooledoverallquaycranes.Allmodeledequipmenthastechnicalspecificationsasisappropriatefor10-year-oldequipment.Theterminalissuitableforayearlythroughputof2.2millionTEU(TEUfactor1.65);thereislessthan5%transshipment.Inpeaksall16quaycraneswillbedeployed,andthepeakgatevolumeequals320containersperhour.Theyardcanbestackedtofour-high,andthepeakyarddensityequals85%.Wehaverunaneight-hourpeakperiodwiththesimulationmodeltogettheferencequaycraneproductivitiesofthestartingscenario.TheresultsareshowninremainderofthestudywewillspecificallyfocusonasituationwithfiveAGVsperQC(onaverage;rovedngseveralchangesStep1–improvement1:replacingdualRMGsbyTwinRMGsThefirststepinwhichdualRMGsarereplacedbyTwinRMGsconsistsofaUseTwinRMGsinsteadofcross-overRMGs:twinRMGsareidenticaldeofthestack(undertypicalyardlayouts,eitherlandsideorwaterside).Thishand,thoseRMGsareslightlyfasterthantheonesinthestandardscenario(4.0m/sinsteadof3.5m/sgantryspeed).Theyardlayoutisadjusted:?ThereisnoneedfortwopairsofrailtosupportalargeandasmallRMG;bothRMGsdriveonthesamerail.Onthesamespacewecanfit41modulesinsteadof35modules.ThismeansthatmoreRMGswillbedeployed:82ce?Storagecapacityisincreasedby19%becauseofthelayoutadjustment.Innalcanaccommodateahigherthroughput.Althoughthiswouldalsoincreasethegatevolume,wekeepthegatevolumeat320bx/hrinthisstep;itwillbeincreasedlater.ResultsAsshowninFigure2,oursimulationsshowanoverallproductivityincreaseinquaycraneperformanceof0.5to1.5bx/hr(+0.9bx/hrat5AGVsperQC,equals+4%).ThisisthecombinedresultofhavingmoreandfasterRMGsintheterminalagainsthavinglessflexibilityinjobassignment.Thehighestimpactcanbeseenonthelandside.WithdualRMGswehadatwoRMGsperstackmodulethatcouldworkonthewaterside,butbecauseoftheirlimitedspeed,bothactuallyneededtoworkonthewatersidetoachieveacceptableperformances.Thishadanegativeimpactonthelandsidewithlongservicetimes:over10utesservicetimeontainerwasprocessedonaverageThetruckservicetimesdrasticallydecreasewhenweusetwin-RMGs,withoneRMGdedicatedtothelandside.Trucksareprocessedsixminutesfasterinthe?Improvement1‘scenariowithtwinRMGs,asshowninFigure3.Step2:increasingterminalthroughputInStep1wementioneda19%increaseinstoragecapacitybecauseofthefactthatmorestackmoduleswithtwin-RMGsfitinthesamespaceasoduleswithdualRMGsInthisstepwealsoincreasemaximumstackingheightfromfourtofive.Thedual-RMGlayoutcannotcopewithahigherstackbecausetheRMGswerealreadyperformingattheirmaximumcapacity(considerthelongtruckimescausedbyvesselproductivitydemandrequiringbothRMGsforvesseljobsfromtimetotime).Thetwin-RMGsshouldbeabletoprocessalargervolumebecausetheyarefaster(4m/sinsteadof3.5m/s)andtherearemorecranes(82insteadof70).Theoverallthroughputincreaseequals119%*125%=48%.Thismeanstheyearlythroughputcanbe3.2millionTEU.Thegatevolumeincreasesto470boxesperhour.Ifthe16quaycranesshouldbeabletoachieve48%cranesmustperform40to42bx/hr.Note:Weconsiderlinearincreasesinthroughputandpeakvolumes.Ofcoursethesenumbersaredependentonotherfactorstoo(suchasberthactorsinthisstudyTheincreasedvolumecausesalargerdemandonlandsidepeakhandlingandastackleadstomoreivemovestoo(shuffles),sothedemandontheRMGsissignificantlyincreased.Wewillfindouthowbadlythisinfluencestheperformance.Theimpactonquaycraneperformanceisnegligible.WithanincreasingnFigureThelandsideperformanceshowsabiggerimpact.AlthoughtheRMGscanhandletheincreasedvolume,theservicetimesincrease.Trucksdeliveringadtowaitaminuteextraonaveragetruckspickingupacontainerattheyardwaitanadditionaltwominutes(Figure5).Figure6showsthestatusdistributionoftheRMGs,dividedinRMGsprocessingthewaterside(WSRMG)andRMGsprocessingthelandside(LSRMG).Althoughtheyarededicatedtodoproductivemovesoftheircorrespondingsidetheycandoemovesforeitherside.ThisiswhytheWSRMGsshowalargeincreasein?shufflemove‘statuswhentheyexecuteshufflesforthegatemoves.ThistakesthestressofflandsideRMGsthatneedtohandlemoretrucks.Infuturestepswewillseewhetherthewatersidevolumecanbeincreasedaswell.Step3:replacingAGVsbyLift-AGVsLOLOAGVsrequireawithRMGsattheyard.ThiscauseswaitingtimesforbothRMGsandAGVs,becauseforalmosteverymoveoneofthemhastfortheothertoarriveThishand-shakecanbeexcludedfromtheprocessngLiftAGVsinsteadofAGVs.Lift-AGVsareabletoplaceandtakecontainersfromaplatformlocatedinfrontofthestackmodulesbyusingaliftmechanism.RMGsplaceandtakecontainersfromtheplatformaswell.InthisstepweuseLift-AGVswith–besidestheliftingability–thesamespecsasthe10-year-oldAGVs.UnlinkedinterchangebetweenLift-AGVandRMGreduceswaitingtimeforbothequipments.Thisshouldincreaseoverallterminalproductivity.Lift-AGVsneedtomakeanadditionalstopinfrontofthecontainerracktolowerorhoisttheirplatform.Thisisanextramoveintheirroutingprocessandcostsadditionaltime(15–25secondsperstackvisit).Thisdecreasesproductivity.ThecontainerracksrequiremorespacethaninterchangepositionsforAGVs.ThereforeonlyfourracksfitineachstackmoduleinterchangezoneinsteadoffiveparkingslotsforAGVs.Thisreducesflexibilityandhasanegativeeffectonperformance.ResultsThequaycraneperformanceincreaseswith3to3.5bx/hrforanynumberofvehiclespercrane.Thereducedwaitingtimeslargelyoutweighthelongerdrivetimesandfewertransferpoints,asshowninFigure7.Figure8showsthemovedurationperboxoftheAGVsandlift-AGVs.IntheleftseealargeportionofthetimeisatRMGTP‘,2.6minutesperbox,whichrepresentsthewaitingtimeforthehand-shakewithanRMG.TherightcolumnforLift-AGVsshowsaslightincreaseindrivingtimes(becausedrivingrequiresanadditionalaction:liftinginfrontofrack),butalsoahugereductioninapproachingquaycranesgenerallyabitearliernow,creasethisrepresentswaitingforafreetransferpointunderthequaycraneorwaitingforcorrectsequence.Figure9,thegraphwithstatus?Waitingforvehicle‘inexperimentswithlift-AGVs.TheRMGshavemoreidletimeremaininghenceincreasedpossibilitiestodomoremovesStep4:usingstate-of-the-artLift-AGVsusedYear-2000AGVtechnicalspecsfortheLift-AGVs.NowweincreasethedrivingtstandardsThenewLift-AGVscandrivefasterstraight,causeshorterdrivingtimesperbox,andhenceincreasedQCproductivity.Thequaycraneproductivityincreasessignificantlyagain:with4to5bx/hr,asshowninFigure10.ThequaycraneproductivityincreaseiscausedbythehugereductioninLift-AGVdrivingtimesperbox.Theyonlydrive5minutesperboxnow,whilethisusedtobe6.5minutes.TheLift-AGVsgenerallyarriveatthequaycranesearlieragain,justlikeinStep3,whichcausesanincreaseinwaitingtimetothequaycranetransferarea,asshowninNote:averagedrivingspeedincreasedfrom7to9.5km/hr.Step5A:moreopportunitymovesTheyardcouldn‘thandlemoremovesintheoriginalsituationtomakeitovesatthequaycranes.AfterStep4,boththewatersideandthelandsideRMGinthestackmoduleshad19%idletime.Tomakeuseofthissparetime,wecontainerscouldbetwin-liftedwhenplannedright.Becauseofthis,andgiventheTEUfactorof1.65,thetwin-liftpercentageisincreasedto30%.Expectedeffects:Thequaycranescanhandlemorecontainerspercycle(permove).Ifthecontainersupplycanbeincreasedtheproductivitywillgoup.Maximumtedperformanceincreaseequals18%%/110%boxes/cycle).TheRMGsneedtosupplymorecontainersfaster.Theiridletimewillincrease.ResultsThequaycraneproductivityisincreasedwithsome3ThequaycraneperformanceincreaseisonlypossiblebecausetheRMGswereabletosupplymorecontainerstotheinterchangeracks(andtakemorecontainersfromthem).ThetopgraphinFigure13showsthateachstacklvesseljobperhourinsteadofTheincreaseinproductivemovescausesthetimespentonproductivemovestogoupfrom62%to66%,asshowninthebottomgraph,Figure13.Idlepercentagedecreasedfrom19%to16%.Theremainingidletimeshowsthereisstillroomforimprovement.Step5B:fasterquaycranes(andNOincreasedtwinpercentage)The(1990-2000)dualtrolleyquaycranesintheoriginalscenarioandthatlyslow.Thelandsidehoisthasanaveragecycletimeof99seconds.Withmodernesofsecondsshouldbepossible.ThekinematicsofthecranesinthemodelhavebeenadjustedinStep5Btobeabletomakecyclesof63seconds.Expectedeffects:Thequaycranescanmakemorecyclesperhourandhenceproductivityshouldincrease.WaitingtimesforLift-AGVsatthequaycranesshoulddecreasesincehencecanservethenextLift-AGVsooner.ResultsThequaycraneproductivityincreasesby5to7bx/hr,or20%,asshowninedafterthisadjustment?Thequaycranestatusrepresentingproductiveactivitydecreasedfrom90%to65%.?Thelift-AGVwaitingandinterchangetimesatquaycranesdecreasedfrom220to100secondsperboxprocessed.?TheidlepercentageofwatersideRMGsdecreasedfrom19%to11%,andproductivityincreasedfrom62%to73%(note:thedifferencesdonotevenoutbecausethelandsideRMGtookovermoreunproductiveworkwhenthewatersideproductivitywasStep6:alladjustmentscombinedThefinalstepisacomparisonbetweenthestartscenarioandalladjustmentslevels.Quaycraneproductivityhasincreasedwith17.2bx/hrintheexperimentswithfivevehiclesperQC–or68%!RememberthatinStep2,withtheincreasedthroughput,wealreadyuptobetween40and42bx/hrandthisgoalhasbeenachieved.TheincreasedquaycraneproductivityisonlypossiblewithmoreefficientLift-AGVsandRMGs.Figure16sthattheLiftAGVsinthefinalscenarioonlyneed7minutestocompleteonecontainermove,whileoriginallytheAGVsneeded11minutes.Withtheincreasedwatersideproductivitiesthestressontheyardhasincreasedaswell.Theterminalthroughputandaccordinggatevolumecauseadditionalmovesintheyard.ThegatereportshowsthattheRMGsareabletocopewiththisincreasedbeenhandledandthetruckservicetimesarestillacceptable,asshowninrepresentedinthegraphwithRMGmovesperstackmodule.InStep6,thetwoRMGsineachstackmoduleexecuted17.6vesselboxesand11.7gateboxesperhour,about50%morethantheoriginalscenario.Meanwhilethenumberofhousekeepingmoveshasbeenheavilyreduced,asshowninFigure18.Thisisnotbecausethereislesstime,butbecauseosemoves.IntheoriginalRMGsoftenhadtodropstack-incontainersasfastaspossibletocopewithlocalpeakdemands.Thosecontainersneededtobetransferredfurtherawayfromtheinterchangeareaslatertomakethatspaceavailableagainforuseduringnewpeaks.Thetwin-RMGsdidn‘thavethatneed,becauseletodeliverstackincontainerstogoodslotsimmediatelyThestatuschartofRMGsshowsthattheRMGsinboththestandardandthefinalscenarioareapproachingtheirlimitsofactivity,asshowninFigure19.Withlessthan10%idlexibilitytocopewithlocalpeaksintheyard.ConclusionsInthispaperwedescribedastep-by-stepapproachtoinglargelyautomatedterminalstostate-of-the-artterminalsandwhateach
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 隔音墊施工方案
- 水利設(shè)施提升施工方案
- 路面硬化路肩首件施工方案
- 青海四合院庭院施工方案
- 地下室成品隔油池施工方案
- 晉中導(dǎo)向標(biāo)志牌施工方案
- 【市占率證明權(quán)威指南】摩托車行業(yè)市占率全解(智研咨詢發(fā)布)
- 排放源的治理技術(shù)選擇與應(yīng)用分析
- 綠色金融與低碳投資的策略及實(shí)施路徑
- 低空經(jīng)濟(jì)公司的經(jīng)營策略
- 2025年度事業(yè)單位招聘考試公共基礎(chǔ)知識模擬試卷及答案(共四套)
- 2024年海東市第二人民醫(yī)院自主招聘專業(yè)技術(shù)人員筆試真題
- 專題07 綜合性學(xué)習(xí)【知識精研】中考語文二輪復(fù)習(xí)
- 2025年江西陶瓷工藝美術(shù)職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫1套
- 《計(jì)算機(jī)基礎(chǔ)與應(yīng)用(Office 和 WPS Office )》課件 項(xiàng)目二?計(jì)算機(jī)操作系統(tǒng)配置與應(yīng)用
- 2025年湖南電氣職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及參考答案
- 混凝土拌合站拌合運(yùn)輸工程合同
- 2025云南昆明空港投資開發(fā)集團(tuán)招聘7人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年廣西壯族自治區(qū)中考化學(xué)試題含答案
- 老年人能力、綜合征評估量表、綜合評估基本信息表、護(hù)理服務(wù)項(xiàng)目清單
- 人工智能崗位招聘筆試題及解答(某大型央企)2025年
評論
0/150
提交評論