![信息對(duì)抗技術(shù)專業(yè)畢業(yè)設(shè)計(jì)英文翻譯說明_第1頁(yè)](http://file4.renrendoc.com/view/be94d9ddb6c38d8b4248e187d172001e/be94d9ddb6c38d8b4248e187d172001e1.gif)
![信息對(duì)抗技術(shù)專業(yè)畢業(yè)設(shè)計(jì)英文翻譯說明_第2頁(yè)](http://file4.renrendoc.com/view/be94d9ddb6c38d8b4248e187d172001e/be94d9ddb6c38d8b4248e187d172001e2.gif)
![信息對(duì)抗技術(shù)專業(yè)畢業(yè)設(shè)計(jì)英文翻譯說明_第3頁(yè)](http://file4.renrendoc.com/view/be94d9ddb6c38d8b4248e187d172001e/be94d9ddb6c38d8b4248e187d172001e3.gif)
![信息對(duì)抗技術(shù)專業(yè)畢業(yè)設(shè)計(jì)英文翻譯說明_第4頁(yè)](http://file4.renrendoc.com/view/be94d9ddb6c38d8b4248e187d172001e/be94d9ddb6c38d8b4248e187d172001e4.gif)
![信息對(duì)抗技術(shù)專業(yè)畢業(yè)設(shè)計(jì)英文翻譯說明_第5頁(yè)](http://file4.renrendoc.com/view/be94d9ddb6c38d8b4248e187d172001e/be94d9ddb6c38d8b4248e187d172001e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Theultrasonicwavepropagationincompositematerial
anditscharacteristicevaluation
JunjieChang,ChangliangZheng,Qing-QingNi
1.Introduction
FRPcompositematerialswereappliedtovariousfields,suchasaircraftandspacestructures,becauseoftheexcellentcharacteristics,e.g.,light-weight,highratioofrelativeintensityandhighratioofrelativerigidity.DespiteFRPhavingsuchoutstandingcharacteristic,cracksinthematrixandfracturesofthefibermakedebondingsuchkindofdamageeasytooccurbetweenthefiberandthematrix,orthemulti-layers.Thesedamagesaredifficulttobedetecteddirectlybyvisualinspectionfromthesamplesurface,causingtroubletoensurethereliabilityandsafetyofthecompositematerialandstructures.Meanwhile,healthmonitoringtechnologiesofmaterialsareindispensable.Amongthem,theultrasonichealthmonitoringtechnologyattractslotsofattentionsinrecentyears.Simulationsbyfiniteelementmethodhavebeenperformedforthedevelopmentofapparatusforultrasonicdamage-detection,suchasultrasonicpictureinspectionandultrasoniclaser,andfortheverificationoftheirsafetyandvalidity.Researchesandcalculationsonthepropagationanalysisoftheultrasonicwaveinfiberstrengtheningcompositematerialshavebeenwellconductedandreported[1–8].
Onthesolidinterface,twokindsofboundariescanbeconsidered.Oneisliquidcontactinwhichthinlubricantisplaced,andonlypowerandpositionmovementperpendiculartotheinterfacearetransmitted.Theotheroneiscompletesolidcombination,whichpowerandpositionmovementbothperpendiculartoandparalleltotheinterfacearetransmitted.
Fiberstrengtheningcompositematerial,theinterfacebetweenthefiberandthematrixcanbeconsideredtobesolidcontact.Inthecaseof,debondingexistingbetweenthematrixandthefiber,fewliteratureswerefound,sincetheconversionsofthetransmittedwavemode,reflectionwavemodeandreflectionpulsephase(waveform)maketheanalysisverycomplicated.Providedthisproblemtobesolved,thequalityofthematerials,tosomeextent,canbeestimatedfromthesoundimpedanceofthereflectorandthetransmissionobject,andtheoptimaldamage-detectionmethodcanbealsoassumedinasimulation.
Inthisresearch,inthesimulationofthetechniquemonitoringthehealthbyanultrasonicwavemethod,theultrasonicwavedistributionpatternwasanalyzedwiththebasictheoryforwavepropagationbyusingthemodelforfiberstrengtheningcompositematerial.Namely,itaimsatobtainingtheamplitudeofthereflectionwaveandtheamplitudeofatransmittedwave,whenthelongitudinalwavehasunitamplitudeincidenceinmodelcompoundmaterial.Inthecaseofanultrasonicwavepropagationinsideamodelmedia,theratesofthereflectivelongitudinal,reflectivetraversewave,transmissionlongitudinalwaveandatransmissiontraversewavegeneratedatageneralincidenceangleintheinterface(afiberandexfoliation)wereanalyzedandreflectivecoefficientandatransmissioncoefficientweregotten,
respectively.Visualizedstudiesseparatingintoalongitudinalwaveandatraversewavewerecarriedout,andthemechanismsofalongitudinalwavedistributionandatraverse-wavedistributionwereelucidatedwhentheultrasonicwavepropagatedinsideacompositematerial.
2.Ultrasonicwaveequations
Considerasinglefibercomposite,i.e.,asinglefiberisembeddedinamatrix.TwodimensionsanalysisisconductedasshowninFig.2.Inthiscase,whenanultrasonicwavepropagatesinthissolidmedia,fromHooke’slaw,thestress–strainrelationshipfortwo-dimensionalplanestraininanisotropicmediaiswrittenasfollows[2]:
(1)
(2)
(3)
(4)
WherekandlareLame′constants,andtheTsuperscriptdenotesthetransposition.
Theultrasonicwaveequationsofmotionfortwodimensionalplanestraininanisotropicmediaareasfollows:
(5)
Where,thefirsttermontheleft-handsideofEq.(5)correspondstoalongitudinalwave,andthesecondtermcorrespondstoatransversewave.
isdensity.Ifthelongitudinalwavevelocity
andtransversewavevelocity
areintroducedtheultrasonicwaveequationsofmotionfortwo-dimensionalplanestraincanberewrittenby
(6)
Inthecaseofaplaneadvancingwave,thefollowingformulaisusedtocalculatefortheoscillatingenergygeneratedbytheultrasonicwaveperunittime:
(7)
3.Resultsofanalysisandsimulation
3.1.Transmissionenergyindifferentinterfaceshapes
Whenanincidentverticalwaveisobliquelyirradiated,fourwavesasshowninFig.3,i.e.,reflectedlongitudinalwave,reflectedtransversewave,transmittedlongitudinalwaveandtransmittedtransversewave,wouldappearontheinterface.Inotherwords,theshapeoftheinterfacebetweenepoxyandglassmayinfluencethepropagationoftheultrasonicwave.Forthisreason,themodelwithdifferentinterfaceshapesasshowninFig.1wasusedtoinvestigatetheinfluenceofinterfaceshapeonwavepropagationbehavior.Thevolumefractionproportionofbothmaterialsis1:1,despiteofthedifferentinterfaceshapesofthethreemodels.Thatistosay,theglass-volume-percentageofallthemodelsis50%.ThepropertiesofeachmediumusedintheanalysisareshowninTable1.Asaboundaryconditionofthemodel,absorptionisconsideredontherightandleftedge,whileitissymmetrical(theroller)ontheupanddowndirection.TheanalyticconditionandtheinputparameterswereshowninTable1.
Fig.2showsthetransmissionenergyoftheultrasonicwavepropagationforthesefourmodelsshowninFig.1.
Fig.1.Fourdifferentinterfaceshapesbetweenepoxyandglass.
Herethetransmissionenergywasdefinedbytheaverageenergyperunitarea,lJ/mm2,atthereceiveredge.Asseen,inModel1,theincidentultrasonicwaveisperpendiculartotheplaneinterface,andtransmittedwaveoccursalongwholeplane,sothatthetransmissionenergyisfarlargerthanthatintheothermodels.Thefull-reflectiontakesplaceinpartofinterfaceinbothModel2andModel3whentheincidenceangleislargerthanthecriticalanglebecausetheultrasonicwaveradiatesobliquelyonaconvexorconcaveinterface.Aboutonethirdoftheincidentwaveexperiencesfull-reflectioninModel2andModel3.However,thetransmissionenergyofModel3islargerthanthatofModel2.AsecondpeakappearsinthetransmissioncurveofModel3.Peak1isareflectedwavethatpropagatesasasecondarywavesourceneartheup-down-wardinterface(intheglassregion),whilepeak2isatransmittedwaveinthecentralpartoftheglassregion.Thereasonmightbethatneartheinterface,arefractiveindexdistributionoccurs,resultingintheappearanceofthescatteredwaves,includingrefractionandreflectionwaves.
Thefull-reflectiontakesplaceininterfaceofModel4(incidenceangleis45_).Allprimaryincidentwaveswerereflected,andtheverysmalltransmissionenergythatshowsasfigureisbecausethedispersionwaveandthereflectedwavepenetratedthepartassecondarywavesourcefromtheverticalneighborhood.
3.2.Influenceofdifferentfiberconditions
Refractiveindexdistributionoccursnearthesecondphaseboundaryduetothesecondphasecompounding,resultingintheappearanceofthescatteredwaves,includingrefractionandreflectioninthecompositematerialsstrengthenedbyfibers.Inthenext,thescatteringoftheultrasonicwaveshowninFig.1willbetakenintoconsideration.Thescattersoccurduetofibersembeddedincompositematerials.Theincidentwave
,propagatinginmatrixregion,isasinusoidalwave.Whentheincidentwavereachesthefiber,someistransmittedintothefiber,andtheotherisreflectedonthefiber/matrixinterface,andbecomesasecondarywavesource.Accordingtotheoverlappingprincipleofwavefunctions,thewholewavefunction
canbeexpressedasasumoftheincidentwave
andthescatteredwave
.
(8)
Wherethescatteredwave
includesallthewavesscatteringcomponentsgeneratedduetotheinterfacefromtheknownwave
.
ThemodelfigureofthecompositematerialsfortheinvestigationofthescatterswasdesignedaswhatshowninFig.3,wherethreefiberswithdifferentshapeswereembeddedinthematrix.Thesizeofthemodelwas
.Theboard-shapedglassfiberwiththickness
wasembeddedinthecenterofthematrixofepoxyinModel1,andwasobliquelyembeddedinModel2.Acolumnshapedglassfiberwithadiameter
wasembeddedinthecenterofmatrixinModel3.Theabovethreemodelshadacommonfiberpercentageof20.TheanalyticconditionandtheinputparameterswereshowninTable1.
ForthemodelsinFig.3,whentheincidentwaveontheleft-handsideoftheglassregionarrivedatthefirstinterfacebetweentheepoxyandglass,thetransmittedwaveandthereflectedwavearose.Thenthereflectedwavepropagatedtotheincidenceside,whilethetransmittedwavepropagatedtothereceiversideandarrivedatthesecondinterfaceoftheglassandepoxythroughtheglassregion.
Thesecondtransmittedwaveandthesecondreflectedwavearoseatthesecondinterface,andamultiplexreflectionoccurredintheglassregion.Fortheboard-shapedfiber(planefiber)andthecolumn-shapedfiber(cylindricalfiber),Fig.4showsthecomparisonsoftheanalyticresultsinthecasesofModel1(fiberthickness
),Model2(fiberthickness
,
_)andModel3(fiberdiameter
)inFig.3,withanequivalentfibervolumefractionbutwithadifferentshape.Asseenfromthefigure,thetransmissionenergyoftheModel1isfarlargerthanthatModel2andModel3.
FromFig.4,whichembeddedtheboard-shapedfiber,twoenergypeakswereclearlyobservedbytransmissionenergycurveinModel1andModel3.InModel1,thestrongpeakscorrespondtothefirsttransmittedwave,andfourweakpeaksareascribedtothefirstreflectedwavebytheglassfiber.InModel3,thefirstenergypeakresultedfromatransmittedwavethroughtheglassfiberregion,whilethesecondenergypeakwasduetothewavepropagatingthroughtheupperandlowerregionsoftheepoxy.Consequently,itcanbeunderstoodwhythetransmissionenergyfortheboard-shapedfiberislargerthanthatofthecolumn-shapedfiber,whenthefibervolumefractionwasthesame.
4.Behaviorofwavepropagationincompositematerial
4.1.Analysismodelandultrasonicpropagationsimulation
Mostoffiberreinforcedcompositesmaterialmaybeconsideredasaninhomogeneousbodymicroscopically,andahomogeneousonemacroscopically.Forthecompositeswithfibers,thefiberarraymodelwillbeusefultotakeintoaccountofthereflectionand/ortransmissionofmultiinterfaces.Inordertoevaluatethemacroscopiccharacteristicofsuchacompositematerial,atwo-dimensiondomainwithdifferentfiberarrayswasproposedasshowninFig.5.Inthismodel,circularglassfiberswereembeddedwithhexagonalintheinterioroftheepoxymatrix.Thesizeofthemodelwas
;thefiberdiameterisd.Anincidentwaveof100MHzwasused.Themodelforanalysiswasdividedinto
elements(1,72,80,000totalelements).Inordertoaccountforthelossofloadcarryingcapacityofthefailedelements,thestiffnessofsuchelementsarereducedbytheuseofnextmethod.
Fig.6showstheseriesofstressdispersionpatternsduringtheultrasonicwavepropagationformodeloffiberreinforcedcompositesinFig.5(fiberdiameter
,withoutattenuation).Whentheultrasonicwavewaspropagatedoutreachedthefiber,thereflectedwave,thetransmittedwave,anddispersionwavewereappearedclearly(Fig.6(a)).Ifawavemotionarrivedattheinterfacebetweenthefiberandthematrix,partofthewavewasreflectedasasecondarysourcewave,andatthesametimeadispersionwavewasgeneratedaroundthefiber.Theotherpartofthewavewastransmittedfiberandpropagatedtoreceiverside.Themultiplexreflectiontookplaceinteriorofthefiber(Fig.6(b)).Moreover,thewavewhichspreadsthecircumferenceofthefiberinterfereseachotheramongfibers,thepropagationsituationoftheultrasonicwavebecomefurthercomplicatesthanthatofbefore(Fig.6(c)–(e)).Fromtheseresults,theinfluenceoffiberonpropagationanddispersionofanultrasonicwaveinacompositematerialcouldbevisualizedandunderstood.
4.2.Influenceoffiber-volume-percentageandwithattenuationinmatrix
Whendiameteroffiberischangedby
andattenuationwith/withoutattenuationinmatrix,whichinvestigateshowthepropagationactionoftheultrasonicwaveinadistributedcompositematerialmodel.Figs.7and8haveshownthetimehistorycurveofreflectionenergywith/withoutattenuationinepoxymatrix,thatduringtheultrasonicwavepropagationformodeloffiberreinforcedcompositesinFig.5,respectively.Fig.9hasshownthetimehistorycurveoftransmittedenergywithattenuationinepoxymatrix.Fig.10hasshownthatcomparisonoftransmissionenergyratiowithand/orwithoutattenuationduringtheultrasonicwavepropagationformodeloffiber-reinforcedcompositesinFig.5,respectively.Afigureincasewithoutattenuationinepoxymatrixisomitted.
Ifthewith/withoutattenuationinepoxymatrixiscompared,thepeakvalueofreflectedenergycurve(inthecaseoffiberdiameter
)withattenuationinepoxymatrix(attenuationcoefficient120dB/m/MHz)issmallerabout30%thanthatwithoutattenuationinepoxymatrix.Moreover,althoughthereflectedenergycurveinthefigureisdisplayedonlytotwopeaks,the2ndpeakvalueislargerthanthe1stpeakvalue.The1stpeakvalueistheenergyofthereflectedwavefromafiber3,andthe2ndpeakvalueistheenergyofthereflectedwavefromfibers1and6(Fig.5).Disorderaroseonthesubsequentreflectiveenergycurve,andregularitywaslost.Moreover,itfollowsontheincreaseinfibersdiameter(fibercontent)thattheenergyofareflectedwaveincreasesirrespectiveofwith/withoutattenuationinepoxymatrix.
Inthecasewithattenuationinepoxymatrix,atforthetransmittedenergyhistorycurve,andthepeakvalue(inthecaseoffiberdiameterd=2k)inthetransmittedenergycurveisabouthalfofthatwithoutattenuation,andthegradeofinfluencebyattenuationinepoxymatrixshowup.Itbecomesclearerfromthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鋰輝石合作協(xié)議書
- 2025年氣體檢測(cè)設(shè)備合作協(xié)議書
- 2025年印刷品、記錄媒介復(fù)制品合作協(xié)議書
- 2025年買賣個(gè)人房屋合同(4篇)
- 2025年臨時(shí)工聘用合同協(xié)議標(biāo)準(zhǔn)版本(三篇)
- 山西省2024七年級(jí)道德與法治上冊(cè)第二單元成長(zhǎng)的時(shí)空第七課在集體中成長(zhǎng)情境基礎(chǔ)小練新人教版
- 2025年臨時(shí)工解除合同樣本(2篇)
- 2025年人防門制作安裝工程施工合同模板(2篇)
- 2025年個(gè)人無息借款合同經(jīng)典版(2篇)
- 2025年二人合作經(jīng)營(yíng)協(xié)議參考模板(三篇)
- 使用錯(cuò)誤評(píng)估報(bào)告(可用性工程)模版
- 六年級(jí)語文下冊(cè)閱讀及參考答案(12篇)
- 《發(fā)展?jié)h語(第二版)中級(jí)綜合(Ⅰ)》第7課+課件
- 第四章《數(shù)列》復(fù)習(xí)小結(jié)示范公開課教學(xué)PPT課件【高中數(shù)學(xué)人教A版】
- GB/T 8944.1-2008紙漿成批銷售質(zhì)量的測(cè)定第1部分:漿板漿包及漿塊(急驟干燥漿)漿包
- 蘇教版(蘇少版)九年級(jí)美術(shù)下冊(cè)全冊(cè)課件
- 2022年江蘇省鹽城市中考英語試題及參考答案
- 中國(guó)文化簡(jiǎn)介英文版(ChineseCultureintroduction)課件
- 文化差異與跨文化交際課件(完整版)
- 工程經(jīng)濟(jì)學(xué)完整版課件全套ppt教程
- 鼻空腸營(yíng)養(yǎng)的護(hù)理及注意事項(xiàng)ppt
評(píng)論
0/150
提交評(píng)論