正弦與余弦定理練習(xí)題及答案_第1頁
正弦與余弦定理練習(xí)題及答案_第2頁
正弦與余弦定理練習(xí)題及答案_第3頁
正弦與余弦定理練習(xí)題及答案_第4頁
正弦與余弦定理練習(xí)題及答案_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

-.z.國慶作業(yè)(一)正弦定理和余弦定理練習(xí)題一.選擇題1.在△ABC中,∠A=45°,∠B=60°,a=2,則b等于()A.eq\r(6)B.eq\r(2)C.eq\r(3)D.2eq\r(6)2.在△ABC中,已知a=8,B=60°,C=75°,則b等于()A.4eq\r(2)B.4eq\r(3)C.4eq\r(6)D.eq\f(32,3)3.在△ABC中,角A、B、C的對邊分別為a、b、c,A=60°,a=4eq\r(3),b=4eq\r(2),則角B為()A.45°或135°B.135°C.45°D.以上答案都不對4.在△ABC中,a∶b∶c=1∶5∶6,則sinA∶sinB∶sinC等于()A.1∶5∶6B.6∶5∶1C.6∶1∶5D.不確定5.在△ABC中,a,b,c分別是角A,B,C所對的邊,若A=105°,B=45°,b=eq\r(2),則c=()A.1B.eq\f(1,2)C.2 D.eq\f(1,4)6.在△ABC中,若eq\f(cosA,cosB)=eq\f(b,a),則△ABC是()A.等腰三角形B.等邊三角形C.直角三角形D.等腰三角形或直角三角形7.已知△ABC中,AB=eq\r(3),AC=1,∠B=30°,則△ABC的面積為()A.eq\f(\r(3),2)B.eq\f(\r(3),4)C.eq\f(\r(3),2)或eq\r(3)D.eq\f(\r(3),4)或eq\f(\r(3),2)8.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.若c=eq\r(2),b=eq\r(6),B=120°,則a等于()A.eq\r(6)B.2C.eq\r(3)D.eq\r(2)二、填空題9.在△ABC中,角A、B、C所對的邊分別為a、b、c,若a=1,c=eq\r(3),C=eq\f(π,3),則A=________.10.在△ABC中,已知a=eq\f(4\r(3),3),b=4,A=30°,則sinB=________.11.在△ABC中,已知∠A=30°,∠B=120°,b=12,則a+c=________.12.在△ABC中,a=2bcosC,則△ABC的形狀為________.13.在△ABC中,A=60°,a=6eq\r(3),b=12,S△ABC=18eq\r(3),則eq\f(a+b+c,sinA+sinB+sinC)=________,c=________.14.已知三角形ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,則eq\f(a-2b+c,sinA-2sinB+sinC)=________.15.在△ABC中,已知a=3eq\r(2),cosC=eq\f(1,3),S△ABC=4eq\r(3),則b=________.16.在△ABC中,b=4eq\r(3),C=30°,c=2,則此三角形有________組解.17.如圖所示,貨輪在海上以40km/h的速度沿著方位角(指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的水平轉(zhuǎn)角)為140°的方向航行,為了確定船位,船在B點觀測燈塔A的方位角為110°,航行半小時后船到達(dá)C點,觀測燈塔A的方位角是65°,則貨輪到達(dá)C點時,與燈塔A的距離是多少?(17題)三、簡答題18.在△ABC中,a、b、c分別為角A、B、C的對邊,若a=2eq\r(3),sineq\f(C,2)coseq\f(C,2)=eq\f(1,4),sinBsinC=cos2eq\f(A,2),求A、B及b、c.19.(2009年高考**卷)在△ABC中,A、B為銳角,角A、B、C所對應(yīng)的邊分別為a、b、c,且cos2A=eq\f(3,5),sinB=eq\f(\r(10),10).(1)求A+B的值;(2)若a-b=eq\r(2)-1,求a,b,c的值.20.△ABC中,ab=60eq\r(3),sinB=sinC,△ABC的面積為15eq\r(3),求邊b的長.21.已知△ABC的周長為eq\r(2)+1,且sinA+sinB=eq\r(2)sinC.(1)求邊AB的長;(2)若△ABC的面積為eq\f(1,6)sinC,求角C的度數(shù).23.在△ABC中,BC=eq\r(5),AC=3,sinC=2sinA.(1)求AB的值;(2)求sin(2A-eq\f(π,4))的值.余弦定理練習(xí)題1.在△ABC中,如果BC=6,AB=4,cosB=eq\f(1,3),則AC等于()A.6B.2eq\r(6)C.3eq\r(6)D.4eq\r(6)2.在△ABC中,a=2,b=eq\r(3)-1,C=30°,則c等于()A.eq\r(3)B.eq\r(2)C.eq\r(5)D.23.在△ABC中,a2=b2+c2+eq\r(3)bc,則∠A等于()A.60°B.45°C.120°D.150°4.在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,若(a2+c2-b2)tanB=eq\r(3)ac,則∠B的值為()A.eq\f(π,6)B.eq\f(π,3)C.eq\f(π,6)或eq\f(5π,6)D.eq\f(π,3)或eq\f(2π,3)5.在△ABC中,a、b、c分別是A、B、C的對邊,則acosB+bcosA等于()A.a(chǎn)B.bC.cD.以上均不對6.如果把直角三角形的三邊都增加同樣的長度,則這個新的三角形的形狀為()A.銳角三角形B.直角三角形C.鈍角三角形D.由增加的長度決定7.已知銳角三角形ABC中,|eq\o(AB,\s\up6(→))|=4,|eq\o(AC,\s\up6(→))|=1,△ABC的面積為eq\r(3),則eq\o(AB,\s\up6(→))·eq\o(AC,\s\up6(→))的值為()A.2B.-2C.4D.-48.在△ABC中,b=eq\r(3),c=3,B=30°,則a為()A.eq\r(3)B.2eq\r(3)C.eq\r(3)或2eq\r(3)D.29.已知△ABC的三個內(nèi)角滿足2B=A+C,且AB=1,BC=4,則邊BC上的中線AD的長為________.10.△ABC中,sinA∶sinB∶sinC=(eq\r(3)-1)∶(eq\r(3)+1)∶eq\r(10),求最大角的度數(shù).11.已知a、b、c是△ABC的三邊,S是△ABC的面積,若a=4,b=5,S=5eq\r(3),則邊c的值為________.12.在△ABC中,sinA∶sinB∶sinC=2∶3∶4,則cosA∶cosB∶cosC=________.13.在△ABC中,a=3eq\r(2),cosC=eq\f(1,3),S△ABC=4eq\r(3),則b=________.14.已知△ABC的三邊長分別為AB=7,BC=5,AC=6,則eq\o(AB,\s\up6(→))·eq\o(BC,\s\up6(→))的值為________.15.已知△ABC的三邊長分別是a、b、c,且面積S=eq\f(a2+b2-c2,4),則角C=________.16.(2011年**調(diào)研)三角形的三邊為連續(xù)的自然數(shù),且最大角為鈍角,則最小角的余弦值為________.17.在△ABC中,BC=a,AC=b,a,b是方程*2-2eq\r(3)*+2=0的兩根,且2cos(A+B)=1,求AB的長.18.已知△ABC的周長為eq\r(2)+1,且sinA+sinB=eq\r(2)sinC.(1)求邊AB的長;(2)若△ABC的面積為eq\f(1,6)sinC,求角C的度數(shù).19.在△ABC中,BC=eq\r(5),AC=3,sinC=2sinA.(1)求AB的值;(2)求sin(2A-eq\f(π,4))的值.20.在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cosAsinB=sinC,確定△ABC的形狀.正弦定理1.在△ABC中,∠A=45°,∠B=60°,a=2,則b等于()A.eq\r(6)B.eq\r(2)C.eq\r(3)D.2eq\r(6)解析:選A.應(yīng)用正弦定理得:eq\f(a,sinA)=eq\f(b,sinB),求得b=eq\f(asinB,sinA)=eq\r(6).2.在△ABC中,已知a=8,B=60°,C=75°,則b等于()A.4eq\r(2)B.4eq\r(3)C.4eq\r(6)D.eq\f(32,3)解析:選C.A=45°,由正弦定理得b=eq\f(asinB,sinA)=4eq\r(6).3.在△ABC中,角A、B、C的對邊分別為a、b、c,A=60°,a=4eq\r(3),b=4eq\r(2),則角B為()A.45°或135°B.135°C.45°D.以上答案都不對解析:選C.由正弦定理eq\f(a,sinA)=eq\f(b,sinB)得:sinB=eq\f(bsinA,a)=eq\f(\r(2),2),又∵a>b,∴B<60°,∴B=45°.4.在△ABC中,a∶b∶c=1∶5∶6,則sinA∶sinB∶sinC等于()A.1∶5∶6 B.6∶5∶1C.6∶1∶5 D.不確定解析:選A.由正弦定理知sinA∶sinB∶sinC=a∶b∶c=1∶5∶6.5.在△ABC中,a,b,c分別是角A,B,C所對的邊,若A=105°,B=45°,b=eq\r(2),則c=()A.1B.eq\f(1,2)C.2 D.eq\f(1,4)解析:選A.C=180°-105°-45°=30°,由eq\f(b,sinB)=eq\f(c,sinC)得c=eq\f(\r(2)×sin30°,sin45°)=1.6.在△ABC中,若eq\f(cosA,cosB)=eq\f(b,a),則△ABC是()A.等腰三角形B.等邊三角形C.直角三角形D.等腰三角形或直角三角形解析:選D.∵eq\f(b,a)=eq\f(sinB,sinA),∴eq\f(cosA,cosB)=eq\f(sinB,sinA),sinAcosA=sinBcosB,∴sin2A=sin2B即2A=2B或2A+2B=π,即A=B,或A+B=eq\f(π,2).7.已知△ABC中,AB=eq\r(3),AC=1,∠B=30°,則△ABC的面積為()A.eq\f(\r(3),2) B.eq\f(\r(3),4)C.eq\f(\r(3),2)或eq\r(3) D.eq\f(\r(3),4)或eq\f(\r(3),2)解析:選D.eq\f(AB,sinC)=eq\f(AC,sinB),求出sinC=eq\f(\r(3),2),∵AB>AC,∴∠C有兩解,即∠C=60°或120°,∴∠A=90°或30°.再由S△ABC=eq\f(1,2)AB·ACsinA可求面積.8.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.若c=eq\r(2),b=eq\r(6),B=120°,則a等于()A.eq\r(6) B.2C.eq\r(3) D.eq\r(2)解析:選D.由正弦定理得eq\f(\r(6),sin120°)=eq\f(\r(2),sinC),∴sinC=eq\f(1,2).又∵C為銳角,則C=30°,∴A=30°,△ABC為等腰三角形,a=c=eq\r(2).9.在△ABC中,角A、B、C所對的邊分別為a、b、c,若a=1,c=eq\r(3),C=eq\f(π,3),則A=________.解析:由正弦定理得:eq\f(a,sinA)=eq\f(c,sinC),所以sinA=eq\f(a·sinC,c)=eq\f(1,2).又∵a<c,∴A<C=eq\f(π,3),∴A=eq\f(π,6).答案:eq\f(π,6)10.在△ABC中,已知a=eq\f(4\r(3),3),b=4,A=30°,則sinB=________.解析:由正弦定理得eq\f(a,sinA)=eq\f(b,sinB)?sinB=eq\f(bsinA,a)=eq\f(4×\f(1,2),\f(4\r(3),3))=eq\f(\r(3),2).答案:eq\f(\r(3),2)11.在△ABC中,已知∠A=30°,∠B=120°,b=12,則a+c=________.解析:C=180°-120°-30°=30°,∴a=c,由eq\f(a,sinA)=eq\f(b,sinB)得,a=eq\f(12×sin30°,sin120°)=4eq\r(3),∴a+c=8eq\r(3).答案:8eq\r(3)12.在△ABC中,a=2bcosC,則△ABC的形狀為________.解析:由正弦定理,得a=2R·sinA,b=2R·sinB,代入式子a=2bcosC,得2RsinA=2·2R·sinB·cosC,所以sinA=2sinB·cosC,即sinB·cosC+cosB·sinC=2sinB·cosC,化簡,整理,得sin(B-C)=0.∵0°<B<180°,0°<C<180°,∴-180°<B-C<180°,∴B-C=0°,B=C.答案:等腰三角形13.在△ABC中,A=60°,a=6eq\r(3),b=12,S△ABC=18eq\r(3),則eq\f(a+b+c,sinA+sinB+sinC)=________,c=________.解析:由正弦定理得eq\f(a+b+c,sinA+sinB+sinC)=eq\f(a,sinA)=eq\f(6\r(3),sin60°)=12,又S△ABC=eq\f(1,2)bcsinA,∴eq\f(1,2)×12×sin60°×c=18eq\r(3),∴c=6.答案:12614.已知△ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,則eq\f(a-2b+c,sinA-2sinB+sinC)=________.解析:由∠A∶∠B∶∠C=1∶2∶3得,∠A=30°,∠B=60°,∠C=90°,∴2R=eq\f(a,sinA)=eq\f(1,sin30°)=2,又∵a=2RsinA,b=2RsinB,c=2RsinC,∴eq\f(a-2b+c,sinA-2sinB+sinC)=eq\f(2RsinA-2sinB+sinC,sinA-2sinB+sinC)=2R=2.答案:215.在△ABC中,已知a=3eq\r(2),cosC=eq\f(1,3),S△ABC=4eq\r(3),則b=________.解析:依題意,sinC=eq\f(2\r(2),3),S△ABC=eq\f(1,2)absinC=4eq\r(3),解得b=2eq\r(3).答案:2eq\r(3)16.在△ABC中,b=4eq\r(3),C=30°,c=2,則此三角形有________組解.解析:∵bsinC=4eq\r(3)×eq\f(1,2)=2eq\r(3)且c=2,∴c<bsinC,∴此三角形無解.答案:017.如圖所示,貨輪在海上以40km/h的速度沿著方位角(指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的水平轉(zhuǎn)角)為140°的方向航行,為了確定船位,船在B點觀測燈塔A的方位角為110°,航行半小時后船到達(dá)C點,觀測燈塔A的方位角是65°,則貨輪到達(dá)C點時,與燈塔A的距離是多少?解:在△ABC中,BC=40×eq\f(1,2)=20,∠ABC=140°-110°=30°,∠ACB=(180°-140°)+65°=105°,所以∠A=180°-(30°+105°)=45°,由正弦定理得AC=eq\f(BC·sin∠ABC,sinA)=eq\f(20sin30°,sin45°)=10eq\r(2)(km).即貨輪到達(dá)C點時,與燈塔A的距離是10eq\r(2)km.18.在△ABC中,a、b、c分別為角A、B、C的對邊,若a=2eq\r(3),sineq\f(C,2)coseq\f(C,2)=eq\f(1,4),sinBsinC=cos2eq\f(A,2),求A、B及b、c.解:由sineq\f(C,2)coseq\f(C,2)=eq\f(1,4),得sinC=eq\f(1,2),又C∈(0,π),所以C=eq\f(π,6)或C=eq\f(5π,6).由sinBsinC=cos2eq\f(A,2),得sinBsinC=eq\f(1,2)[1-cos(B+C)],即2sinBsinC=1-cos(B+C),即2sinBsinC+cos(B+C)=1,變形得cosBcosC+sinBsinC=1,即cos(B-C)=1,所以B=C=eq\f(π,6),B=C=eq\f(5π,6)(舍去),A=π-(B+C)=eq\f(2π,3).由正弦定理eq\f(a,sinA)=eq\f(b,sinB)=eq\f(c,sinC),得b=c=aeq\f(sinB,sinA)=2eq\r(3)×eq\f(\f(1,2),\f(\r(3),2))=2.故A=eq\f(2π,3),B=eq\f(π,6),b=c=2.19.(2009年高考**卷)在△ABC中,A、B為銳角,角A、B、C所對應(yīng)的邊分別為a、b、c,且cos2A=eq\f(3,5),sinB=eq\f(\r(10),10).(1)求A+B的值;(2)若a-b=eq\r(2)-1,求a,b,c的值.解:(1)∵A、B為銳角,sinB=eq\f(\r(10),10),∴cosB=eq\r(1-sin2B)=eq\f(3\r(10),10).又cos2A=1-2sin2A=eq\f(3,5),∴sinA=eq\f(\r(5),5),cosA=eq\f(2\r(5),5),∴cos(A+B)=cosAcosB-sinAsinB=eq\f(2\r(5),5)×eq\f(3\r(10),10)-eq\f(\r(5),5)×eq\f(\r(10),10)=eq\f(\r(2),2).又0<A+B<π,∴A+B=eq\f(π,4).(2)由(1)知,C=eq\f(3π,4),∴sinC=eq\f(\r(2),2).由正弦定理:eq\f(a,sinA)=eq\f(b,sinB)=eq\f(c,sinC)得eq\r(5)a=eq\r(10)b=eq\r(2)c,即a=eq\r(2)b,c=eq\r(5)b.∵a-b=eq\r(2)-1,∴eq\r(2)b-b=eq\r(2)-1,∴b=1.∴a=eq\r(2),c=eq\r(5).20.△ABC中,ab=60eq\r(3),sinB=sinC,△ABC的面積為15eq\r(3),求邊b的長.解:由S=eq\f(1,2)absinC得,15eq\r(3)=eq\f(1,2)×60eq\r(3)×sinC,∴sinC=eq\f(1,2),∴∠C=30°或150°.又sinB=sinC,故∠B=∠C.當(dāng)∠C=30°時,∠B=30°,∠A=120°.又∵ab=60eq\r(3),eq\f(a,sinA)=eq\f(b,sinB),∴b=2eq\r(15).當(dāng)∠C=150°時,∠B=150°(舍去).故邊b的長為2eq\r(15).余弦定理1.在△ABC中,如果BC=6,AB=4,cosB=eq\f(1,3),則AC等于()A.6 B.2eq\r(6)C.3eq\r(6) D.4eq\r(6)解析:選A.由余弦定理,得AC=eq\r(AB2+BC2-2AB·BCcosB)=eq\r(42+62-2×4×6×\f(1,3))=6.2.在△ABC中,a=2,b=eq\r(3)-1,C=30°,則c等于()A.eq\r(3) B.eq\r(2)C.eq\r(5) D.2解析:選B.由余弦定理,得c2=a2+b2-2abcosC=22+(eq\r(3)-1)2-2×2×(eq\r(3)-1)cos30°=2,∴c=eq\r(2).3.在△ABC中,a2=b2+c2+eq\r(3)bc,則∠A等于()A.60° B.45°C.120° D.150°解析:選D.cos∠A=eq\f(b2+c2-a2,2bc)=eq\f(-\r(3)bc,2bc)=-eq\f(\r(3),2),∵0°<∠A<180°,∴∠A=150°.4.在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,若(a2+c2-b2)tanB=eq\r(3)ac,則∠B的值為()A.eq\f(π,6) B.eq\f(π,3)C.eq\f(π,6)或eq\f(5π,6) D.eq\f(π,3)或eq\f(2π,3)解析:選D.由(a2+c2-b2)tanB=eq\r(3)ac,聯(lián)想到余弦定理,代入得cosB=eq\f(a2+c2-b2,2ac)=eq\f(\r(3),2)·eq\f(1,tanB)=eq\f(\r(3),2)·eq\f(cosB,sinB).顯然∠B≠eq\f(π,2),∴sinB=eq\f(\r(3),2).∴∠B=eq\f(π,3)或eq\f(2π,3).5.在△ABC中,a、b、c分別是A、B、C的對邊,則acosB+bcosA等于()A.a(chǎn) B.bC.c D.以上均不對解析:選C.a·eq\f(a2+c2-b2,2ac)+b·eq\f(b2+c2-a2,2bc)=eq\f(2c2,2c)=c.6.如果把直角三角形的三邊都增加同樣的長度,則這個新的三角形的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.由增加的長度決定解析:選A.設(shè)三邊長分別為a,b,c且a2+b2=c2.設(shè)增加的長度為m,則c+m>a+m,c+m>b+m,又(a+m)2+(b+m)2=a2+b2+2(a+b)m+2m2>c2+2cm+m2=(c+m)2,∴三角形各角均為銳角,即新三角形為銳角三角形.7.已知銳角三角形ABC中,|eq\o(AB,\s\up6(→))|=4,|eq\o(AC,\s\up6(→))|=1,△ABC的面積為eq\r(3),則eq\o(AB,\s\up6(→))·eq\o(AC,\s\up6(→))的值為()A.2 B.-2C.4 D.-4解析:選A.S△ABC=eq\r(3)=eq\f(1,2)|eq\o(AB,\s\up6(→))|·|eq\o(AC,\s\up6(→))|·sinA=eq\f(1,2)×4×1×sinA,∴sinA=eq\f(\r(3),2),又∵△ABC為銳角三角形,∴cosA=eq\f(1,2),∴eq\o(AB,\s\up6(→))·eq\o(AC,\s\up6(→))=4×1×eq\f(1,2)=2.8.在△ABC中,b=eq\r(3),c=3,B=30°,則a為()A.eq\r(3) B.2eq\r(3)C.eq\r(3)或2eq\r(3) D.2解析:選C.在△ABC中,由余弦定理得b2=a2+c2-2accosB,即3=a2+9-3eq\r(3)a,∴a2-3eq\r(3)a+6=0,解得a=eq\r(3)或2eq\r(3).9.已知△ABC的三個內(nèi)角滿足2B=A+C,且AB=1,BC=4,則邊BC上的中線AD的長為________.解析:∵2B=A+C,A+B+C=π,∴B=eq\f(π,3).在△ABD中,AD=eq\r(AB2+BD2-2AB·BDcosB)=eq\r(1+4-2×1×2×\f(1,2))=eq\r(3).答案:eq\r(3)10.△ABC中,sinA∶sinB∶sinC=(eq\r(3)-1)∶(eq\r(3)+1)∶eq\r(10),求最大角的度數(shù).解:∵sinA∶sinB∶sinC=(eq\r(3)-1)∶(eq\r(3)+1)∶eq\r(10),∴a∶b∶c=(eq\r(3)-1)∶(eq\r(3)+1)∶eq\r(10).設(shè)a=(eq\r(3)-1)k,b=(eq\r(3)+1)k,c=eq\r(10)k(k>0),∴c邊最長,即角C最大.由余弦定理,得cosC=eq\f(a2+b2-c2,2ab)=-eq\f(1,2),又C∈(0°,180°),∴C=120°.11.已知a、b、c是△ABC的三邊,S是△ABC的面積,若a=4,b=5,S=5eq\r(3),則邊c的值為________.解析:S=eq\f(1,2)absinC,sinC=eq\f(\r(3),2),∴C=60°或120°.∴cosC=±eq\f(1,2),又∵c2=a2+b2-2abcosC,∴c2=21或61,∴c=eq\r(21)或eq\r(61).答案:eq\r(21)或eq\r(61)12.在△ABC中,sinA∶sinB∶sinC=2∶3∶4,則cosA∶cosB∶cosC=________.解析:由正弦定理a∶b∶c=sinA∶sinB∶sinC=2∶3∶4,設(shè)a=2k(k>0),則b=3k,c=4k,cosB=eq\f(a2+c2-b2,2ac)=eq\f(2k2+4k2-3k2,2×2k×4k)=eq\f(11,16),同理可得:cosA=eq\f(7,8),cosC=-eq\f(1,4),∴cosA∶cosB∶cosC=14∶11∶(-4).答案:14∶11∶(-4)13.在△ABC中,a=3eq\r(2),cosC=eq\f(1,3),S△ABC=4eq\r(3),則b=________.解析:∵cosC=eq\f(1,3),∴sinC=eq\f(2\r(2),3).又S△ABC=eq\f(1,2)absinC=4eq\r(3),即eq\f(1,2)·b·3eq\r(2)·eq\f(2\r(2),3)=4eq\r(3),∴b=2eq\r(3).答案:2eq\r(3)14.已知△ABC的三邊長分別為AB=7,BC=5,AC=6,則eq\o(AB,\s\up6(→))·eq\o(BC,\s\up6(→))的值為________.解析:在△ABC中,cosB=eq\f(AB2+BC2-AC2,2AB·BC)=eq\f(49+25-36,2×7×5)=eq\f(19,35),∴eq\o(AB,\s\up6(→))·eq\o(BC,\s\up6(→))=|eq\o(AB,\s\up6(→))|·|eq\o(BC,\s\up6(→))|·cos(π-B)=7×5×(-eq\f(19,35))=-19.答案:-1915.已知△ABC的三邊長分別是a、b、c,且面積S=eq\f(a2+b2-c2,4),則角C=________.解析:eq\f(1,2)absinC=S=eq\f(a2+b2-c2,4)=eq\f(a2+b2-c2,2ab)·eq\f(ab,2)=eq\f(1,2)abcosC,∴sinC=cosC,∴tanC=1,∴C=45°.答案:45°16.(2011年**調(diào)研)三角形的三邊為連續(xù)的自然數(shù),且最大角為鈍角,則最小角的余弦值為________.解析:設(shè)三邊長為k-1,k,k+1(k≥2,k∈N),則eq\b\lc\{\rc\(\a\vs4\al\co1(k2+k-12-k+12<0,k+k-1>k+1))?2<k<4,∴k=3,故三邊長分別為2,3,4,∴最小角的余弦值為eq\f(32+42-22

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論